SOME RESULTS ON HIGHER SUSLIN TREES

R. DAVID

Higher Suslin trees have become a tool in some forcing constructions in set theory (see, for example, [D1] and [D2]). Most of the constructions using ω_1 Suslin trees can be extended to κ^+ Suslin trees for any regular cardinal κ. Some of these are given in §1.

In many such constructions, sequences of Suslin trees are used. In §II we show, in various ways, that the generalization to sequences, even ω-sequences, of κ^+ Suslin trees cannot be done.

In these constructions the Suslin trees are used as forcing poset (the forcing adds a branch in the tree). There is another way to kill a Suslin tree, namely by adding a big antichain. Some results on this forcing are given in §III.

Our notation is standard. If T is a tree and $x \in T$, then $|x|$ is the height of x in T. We define T_x (or $T(x)$) = $\{x \in T : |x| = \alpha\}$ and $T|_x = \{x \in T : |x| < \alpha\}$.

If p and q are forcing conditions, $p \leq q$ means that p has more information than q.

If $(T_x : x \in I)$ is a sequence of trees, $\prod T_x$ will always mean the set of $(x_\beta : x \in I)$ such that $x_\beta \in T_x$ and $|x_\beta| = |x_\beta|$ for $x, \beta \in I$.

For functions b, T, \ldots we denote by $b|_x, T|_x, \ldots$ their restriction to x.

If x is a sequence of ordinals and x is an ordinal, $x^+ x$ is the sequence obtained by concatenating x at the end of x.

Acknowledgement. The referee pointed out many mistakes or mischiefs, made very useful remarks, and corrected some proofs which were incorrect. I would like to thank him for all that work.

§1. κ^+ Suslin trees. The basic construction of an ω_1 Suslin tree (due to Jensen) is easily generalized to κ^+ Suslin trees for any regular κ.

Definition 1. Let κ be a regular cardinal, I a set of cardinality less than or equal to κ. The canonical κ^+ Suslin tree T (resp. the canonical sequence $(T^x)_x \in I$ of κ^+ Suslin trees) is defined as follows.

The levels are defined by induction:

$T(\mu + 1)$ (resp. $T^x(\mu + 1)$) = $\{x^+ \xi : \xi < \kappa, x \in T(\mu)$ (resp. $T^x(\mu))\}$.

cf $\mu < \kappa$: extend all the branches.

cf $\mu = \kappa$: let $\eta(\mu)$ be the least η such that $L_\eta \models ZF^- + \bar{\mu} = \kappa$ and $T|_\mu$ (resp. $(T^x|_\mu : x \in I)) \in L_\eta$.

Received October 24, 1984; revised June 17, 1986, and July 25, 1988.

© 1990, Association for Symbolic Logic
Let $C(\mu)$ be the set of forcing conditions defined by: $f \in C(\mu) \iff f: |f| < \kappa \rightarrow T |\mu$ (resp. $\bigcup_{\kappa \in T^*} |\mu|; f \leq g \text{ iff } |f| \geq |g| \& \forall \xi < \kappa \ f(\xi) \geq g(\xi)$.

$C(\mu)$ clearly is $< \kappa$-closed; let $G(\mu)$ be the L-least $C(\mu)$-generic over $L_{g(\mu)}$, and define $B_k = \bigcup_{f \in G(\mu), \xi \in \text{dom } f} f(\xi)$. Define the branches in $T(\mu)$ (resp. $T^*(\mu)$) as the $ \{ B_k : \xi < \kappa \}$. It is easy to check, using the standard condensation argument, that T is Suslin and that $\prod T^* = \{ p : I \rightarrow \text{dom } p; \text{card}(\text{dom } p) < \kappa; \forall \alpha \in \text{dom } p \ p(\alpha) \in T^* \}$ satisfies the κ^+-chain condition.

In [JJ], Jensen and Johnsbraten use an ω-sequence of ω_1 Suslin trees to define a Π^2_2 formula and build a generic real a such that $L \models \exists x \phi(x), L(a) \models ZF + \phi(a) + \text{\textup{ZF}} + a' \models (ZF + \phi(a) + \phi(a') = 2^\aleph_0 \leq \aleph_1)$.

The basic tool is a construction of a Suslin tree T which has the additional property that if in some extension of L there are two distinct branches in T, then 2^\aleph_0 is collapsed. This again can be easily generalized.

Proposition 2. Let κ be a regular cardinal. There is in L a κ^+ Suslin tree T such that the following holds: for any $B \neq B'$ in some extension of L if $L(B, B') \models ZF + B, B'$ are branches in T, then $(\kappa^+)^{L(B, B')} > (\kappa^+)^L$.

Proof. (Sketch.) Let Q be an elementary extension of Q, the set of rational numbers, of cardinality κ that is saturated (i.e., every set $A(x)$ of formulas which is finitely satisfiable in Q and has cardinality less than κ is satisfiable in Q). The proof follows exactly the one in [JJ] with Q instead of Q.

Proposition 3. Let κ be a regular cardinal. There is a Π^2_2 formula $\phi(x)$ such that:

1. $V = L = \mathbb{R} \times \kappa H_{\aleph_1} \models \phi(x)$;
2. $\kappa^+ = (\kappa^+)^L \Rightarrow \exists \in X \in \kappa H_{\aleph_1} \models \phi(X)$; and
3. there is a forcing notion P definable in L with parameter κ that preserves cardinals and the cofinality function such that any P-generic extension of L satisfies $3X \in \kappa H_{\aleph_1} \models \phi(X)$.

Proof. An immediate generalization of [JJ] (note: this kind of result will be used in a forthcoming paper which gives a Π^2_2 formula such that two distinct solutions collapse $\aleph_{\alpha+1}$).

§II. ω-sequences of Suslin trees.

Proposition 1. Let $(T_n)_{n \in \omega}$ be a sequence of ω_1 Suslin trees such that, for every $m < \omega$, $\prod_{n < m} T_n$ is ω_1-cc. Then $T_f = \text{the product (with finite support) of the } T_n$ is ω_1-cc.

Proof. This follows from the fact (see [JE]) that the direct limit of ccc Boolean algebras is ccc.

Note. There is a sequence (T_n) which is a slight variation of the canonical ω-sequence of ω_1 Suslin trees such that $T = \prod T_n$ (the product with full support) is ω_1-distributive.

Proof. Change $C(\mu)$ in the following way: a condition is a sequence $f = (f_n)_{n \in \omega}$ such that:

1. $f \in L_{g(\mu)}$; and
2. $\forall n<\omega f_n, |f_n| < \omega \rightarrow T_n |\mu$.

Set $f \leq g$ iff $\forall n |f_n| \geq |g_n|$ and $\forall i < |g_n| f_n(i) \geq g_n(i)$.

It is easy to check that $\forall n<\omega \prod_{n < m} T_n$ is ω_1-cc. I now prove that $T = \prod T_n$ is ω_1-distributive. Let $(D_n)_{n < \omega}$ be a sequence of strongly dense subsets of $T, x = (x_n)_n \in T$. Use the traditional condensation argument to find $\mu < \beta < \omega_1$ and $\pi : L_{\beta} \rightarrow L_{\omega_2}$.
such that $\pi(\mu) = \omega_1$ and π is elementary and $\pi(D_i \cap L_\mu) = D_i$. Let $f \in G(\mu)$ be such that $f(i) \supseteq \chi$ for a sequence (i_n) in L_μ. It is easy to check that if $y = B_{i_n}$ then $y \in \bigcap_{i < \alpha} D_i$.

Note 2. If (T_n) is an ω-sequence of ω_1 trees, $T = \prod T_n$ (the product with full support) never is ω_1-cc; then Note 1 shows that it can however preserve ω_1. I do not know whether such a sequence can be found so that T collapses ω_1.

Mitchell (see [LS]) has built a sequence $(T_n)_{n < \omega}$ of ω_2 Suslin trees such that $\prod_{n < m} T_n$ is ω_2-cc for every $m < \omega$ but $T = \prod T_n$ is not ω_2-cc. This can be improved by

Proposition 2. There is an L-definable sequence $(T_n)_{n < \omega}$ of ω_2, ω-closed Suslin trees such that

1) $\forall m < \omega \prod_{n < m} T_n$ is ω_2-cc, and
2) ω_2^L is collapsed in every $T = \prod T_n$ generic extension of L.

(The conclusion follows from the weaker assumption: CH + $\diamondsuit(\{\mu < \omega_2: cf \mu = \omega_1\})$)

Proof (Sketch). Let $F = \{f: |f| < \omega_1 \rightarrow \omega_2; f$ increasing; $\forall x < |f|: x$ successor $\Rightarrow cf(f(x)) = \omega_1$ and x limit $\Rightarrow f(\alpha) = \sup(f(\beta); \beta < \alpha)\}$. The idea is to define

(c): $f \in F$ such that $c_f \in \prod_\mathbb{N} T_n$ and

- $c_0 = (\text{root of } T_0)\gamma$;
- $\forall f, g \in F$
 - $b_1): |c_f| = sup f$,
 - $b_2): f \leq g$ $\Rightarrow c_f \leq c_g$,
 - $b_3): f$ incompatible with g $\Rightarrow c_f \not\prec c_g$,
 - $b_4): f/|f|$ limit $\Rightarrow c_f = \bigcup_{x < |f|} c_f|x$,
 - $b_5): \{c_f\supseteq \chi = \omega_1\}$ is a maximal antichain in T above c_f;
- $\forall \alpha \in \mathbb{N}$ $\{f\in F: c_f \leq \alpha\}$ has a unique maximal element, which will be denoted by f_{α}.

The construction of the $(T_n)_n$ is essentially that of the canonical trees. A technical hypothesis has to be maintained so that the construction does not break and $\prod_{n < m} T_n$ is ω_2-cc, for which I need the following definition.

Let C be the set of $c = (p, X)$ where

- $a): \alpha = q \supseteq \omega_1 \rightarrow \bigcup_{n < \omega} |p|$ for some $|p| < \omega_2$, and
- $b): X$ is a countable set of functions φ such that $\varphi: \omega \rightarrow \omega_2$ and $\forall n < \omega p(\varphi(n)) \in T_n$ (for $\varphi \in X$ let $p_\varphi = (p \setminus \varphi(n))_n$).

Define an order on C by setting, for $c = (p, X)$ and $d = (q, Y)$, $c \leq d$ if $\alpha = \alpha_\mu$; $|p| \geq |q|; \exists \gamma; X \supseteq Y; \text{ and}$

- $\forall \xi < \alpha_\mu p(\xi) \geq q(\xi)$, $\forall \varphi \in Y f_{p_\varphi} = f_{q_\varphi}$ (i.e. $\forall g \in F c_g \leq p_\varphi$ iff $c_g \leq q_\varphi$).

The induction hypothesis to be maintained is:

$H(\mu)$: $\forall \nu < \mu \forall (q, X) \in C \forall Y \in \prod_{n < m} (T_n)_n$ if $|q| = \nu$ and $\forall n < \mu m (\mu(n) < \gamma_n$ then there is a p such that $(p, X) \in C$ and $(p, X) \leq (q, X)$ and $\alpha_p = \alpha_q$ and $|p| = \mu$ and $\forall n < \mu p(\mu(n)) = \gamma_n$ (this means that countably many points can be extended in such a way that the f_{α_p} are preserved). Now replace (in the definition of the canonical trees) the forcing $C(\mu)$ by

$C(\mu) = \{(p, X) \in C: |p| < \mu\}$

It is routine to check that everything is as wanted.
Remark. The referee pointed out that this property is true for (almost) any ω-sequence of disjoint subtrees of an ω_2-super-Suslin tree. The following is due to him.

First, let us recall Shelah’s definition of ω_2-super-Suslinity. Suppose T is a normal ω_2-tree. Let

$$\text{lev}_\omega(T) = \{(t_i; i < \omega): \text{ for all } i, j \in \omega, t_i \neq t_j \text{ and } \text{ht}(t_i) = \text{ht}(t_j)\}. $$

Letting $t = (t_i; i < \omega)$ and $t' = (t'_i; i < \omega)$, we define $[\text{lev}_\omega(T)]^2 = \{(t, t') \in \text{Lev}_\omega(T)^2: t_i < t'_i \text{ for all } i < \omega\}$, T is ω_2-super-Suslin if there is an $H: [\text{lev}_\omega(T)]^2 \rightarrow \omega_1$ such that whenever $H(||t, t'||) = H||(t, t')||$, letting $t^4 = (t^4_i; i < \omega)$, there is an $i < \omega$ such that t^4_i is compatible with t_i^1.

Two key facts about ω_2-super-Suslin trees are, first, that so long as \mathbb{N}_2 is not collapsed and no reals are added to a model of set theory in which T is super-Suslin, if $X < T$ is an antichain such that $t \in X$ and $[t' \in T: t' \geq t]$ is not ω_2 Suslin, then X is finite; second, the existence of an ω_2-super-Suslin tree follows from CH and the existence of an $(\omega_1, 1)$ morass. These facts are established in [S-ST].

If T, as witnessed by H, is an ω_2-super-Suslin tree in L and $(t_n; n \in \omega) \in \text{lev}_\omega(T)^\omega$, then, letting $T_n = T|t_n = \{t \in T: t \sim t_n\}$, we see that $\prod_{n \in \omega} T_n$ collapses ω_2. This can be seen by supposing $b = (b_n; n \in \omega)$ is a $(\prod_{n \in \omega} T_n)^l$-generic sequence of branches and considering $[(t^4_i; i \in \omega): \delta < \alpha < \omega_2]$, where $\delta = \text{ht}(t_n)(\text{for all } n)$ and t^4_i is chosen so that $\text{ht}(t^4_i) = \alpha + 2$ and $b_1|\alpha + 1 = t^4_i|\alpha + 1$ and t^4_i is incompatible with $b_1|\alpha + 2$. Since $(b_n|\alpha + 2; n \in \omega) \in L$, we may insist that, for each $n, (t^4_i; i \in \omega) \in L$ and, hence, $(t_n; n \in \omega), (t^4_i; i \in \omega) \in \text{dom}(H)$. Then, if, for $\alpha \in \omega_2 \setminus (\delta + 1$) we have $f(\alpha) = H((t_n; n \in \omega), (t^4_i; i \in \omega))$, then f is one-to-one and witnesses that $[\omega_2]^{\aleph_0} \leq \omega_1$.

Now, if we knew for each n that $\prod_{m < \omega} T_m \models "T_n \text{ satisfies the } \omega_2\text{-cc}"$, we could conclude that $\prod_{m \leq n} T_n$ satisfies the ω_2-cc, since forcing with $(\prod_{m < \omega} T_n) \ast T_n$ is equivalent to forcing with $\prod_{m \leq n} T_n$. Of course, if $\prod_{m < \omega} T_m$ satisfies the ω_2-cc (and thus has a dense subset which is an ω_2-Suslin tree) and (b_0, \ldots, b_{n-1}) is a $\prod_{m < \omega} T_m$-generic sequence of branches, then no reals are added and no cardinals are collapsed in passing from L to $L[b_0, \ldots, b_{n-1}]$, and, since T is ω_2-super-Suslin, only finitely many of the $\{T_m: m \geq n\}$ are not ω_2 Suslin in $L[b_0, \ldots, b_{n-1}]$. However, since T_n itself may fail to be ω_2 Suslin in $L[b_0, \ldots, b_{n-1}]$, to obtain an alternate proof of Proposition 2, it is necessary to be a bit more careful in our choice of $(t_n; n \in \omega) \in L$.

We may assume $T \in L_{\omega_2}$. Choose X such that $X < L_{\omega_2}$, with $(X; T \cap X, H \cap X) \prec (L_{\omega_2}; T, H)$, $H \in X$, and $X \cap \omega_2 = \alpha$, where $\text{cf}(\alpha) = \omega_1$. Let β be such that $L_\beta \approx X$. Then $\beta^{-1}(\alpha) = \alpha$ and $\beta^{-1}(T) = T \cap L_\beta$. Define a sequence of nodes $(t_n; n \in \omega)$ as follows: let $t_0 \in T$, $t_0(\alpha) = \alpha$, be arbitrary. Then $t_0 = T \cap L_\beta$ generic over L_β and $L_\beta[t_0] \models "\alpha = \omega_2"$. Let $t_0 < t_0$ be on the first level of T (which we assume to be infinite). Since $L_\beta \models "T \cap L_\beta \text{ is super-Suslin}"$, there is a t_1 such that $t_1(\alpha) = 1$ and $L_\beta[t_0, t_1] \models "(T|t_0) \cap L_\beta \text{ is Suslin}"$.

Choose $\alpha_0 < \alpha$ such that $L_\beta \models "t_0|\alpha_0 \forces (T|t_0) \cap L_\beta \text{ is Suslin}\"$.

Choose $t_1 \in T|t_0$ of height α. Then $L_\beta[t_0, t_1] \models "\alpha = \omega_2"$. Next choose t_2 of height 1 in T such that $L_\beta[t_0, t_1] \models "(T|t_2) \cap L_\beta \text{ is Suslin}\"$ and pick $\alpha_1 < \alpha$, $\alpha_1 \geq \alpha_0$, such that

$$L_\beta \models "(t_0|\alpha_1, t_1|\alpha_2) \forces (T|t_0 \times T|t_1) \cap L_\beta \text{ is Suslin}\"."
Choose $t_2 > L_2$ such that $ht(t_2) = \alpha$. Continue in this manner to define $(t_n; n \in \omega)$ and $(\delta_n; n \in \omega)$. Let $s_\omega = \sup \{s_n; n \in \omega\} < \alpha$. For $n < \omega$, let $s_n = t_n | s_\omega$. Then, for each $n \in \omega$,

$$L_p \models \langle T \mid s_0 \times T \mid s_1 \times \cdots \times T \mid s_n \rangle \cap L_{\delta_n} \models \langle T \mid s_{n+1} \rangle \cap L_{\delta_n} \text{ is Suslin} \rangle.$$

Consequently, as π is an elementary embedding, for each $n \in \omega$, $\prod_{m \leq n} T | s_m$ satisfies the ω_2-cc.

Minor modifications of this argument show that CH together with the existence of an $(\omega_1, 1)$ morass, which provide an ω_2 super-Suslin tree, suffice to prove Proposition 2.

The rest of this section will now study how the Suslinity of a tree (or a sequence of trees) is preserved by a generic extension.

Proposition 3. Let T be a κ^+ Suslin tree (κ a regular cardinal) in a model M of ZF. Let N be a P-generic extension of M for a poset $P \in M$ such that either a) P has the κ^+ strong chain property (i.e. $\forall X \in P$ card $X = \kappa^+$ $\exists Y \subseteq X$ card $Y = \kappa^+$ $\forall p, q \in Y$ p and q are compatible), or b) P is κ-closed (i.e. for every decreasing sequence $(p_\alpha; \alpha < \kappa)$ in P there is a condition p such that $p \leq p_\alpha$ $\forall \alpha < \kappa$).

Then T still is Suslin in N.

(Note. Some cardinals may be collapsed in the extension. For example, if $\kappa = \omega_1$ and $\omega_2^N = \omega_1^M$, then, in N, T becomes an ω_1 Suslin tree.)

Proof. This result is well known; see e.g. [DJJ] for $\kappa = \omega$. It is enough to show that any antichain of T in N has cardinality at most κ. Assume not. Let A be a name such that

$$\emptyset \models_{P} A \text{ is a maximal antichain in } T \text{ of size } \kappa^+.$$

Assume first that P has the strong chain property.

Let $B = \{x \in T; \exists p \in P \models x \in A\}$. Clearly $B \supseteq A$. For x in B choose p_x such that $p_x \models x \in A$. Let $C = \{p_x; x \in B\}$. Then there is a $D \subseteq B$ such that card $D = \kappa^+$ and $\forall x, y \in D p_x$ is compatible with p_y (by the claim if card $C = \kappa^+$; by evidence otherwise). Since if p_x is compatible with p_y then $x \parallel y$ (i.e. x is incompatible with y), this contradicts the fact that T is Suslin in M.

Assume next that P is closed.

It is easy to build a sequence $((p_\alpha; A_\alpha); \alpha < \kappa^+)$ such that $(p_\alpha; \alpha < \kappa^+)$ is a decreasing, $T | A \supseteq A_\alpha$, $p_\alpha \models A \cap T | A = A_\alpha$ and $y \in A$, for some y compatible with the αth element of T. Let $A = \bigcup A_\alpha$. Clearly A is a maximal antichain in M. This implies $p_\alpha \models A = A_\alpha$ for some α, which is a contradiction since $\emptyset \models A$ has size κ^+.

(Note. This proposition can be straightforwardly generalized to assert that the κ^+-chain property of posets of cardinality κ^+ is absolute for P-generic extension when P satisfies the hypothesis of the proposition.)

Though in general weaker assumptions are not enough to preserve the Suslinity of a tree (e.g. assuming that P is κ^+-cc or κ^+-distributive is not enough, since forcing with the tree itself is both), in many cases when P is not intended to kill the Suslinity of T, T will remain Suslin after a P-generic extension. Conditions of the following kind frequently occur in coding conditions.

Proposition 4. Let P be the following set of conditions: $p \in P$ iff $p \models |p| < \kappa^+ \rightarrow 2$ and $\forall \xi \leq |p|\ p \models \xi \in L_{\eta(\xi)}$, where $\eta(\xi)$ is the least $\eta < \xi$ for which $L_{\eta} \models ZF^+
card $\xi = \kappa$. Then:

1) P is κ^+ distributive but not κ closed.

2) Let T be the canonical κ^+ Suslin tree. Then T remains Suslin in any P-generic extension of L.

Proof. 1) See [D1].

2) Let $A \subset \kappa^+$ be generic for P. Use the standard condensation argument in $L[A]$. Let $\mu = \pi^{-1}(\kappa^+)$. Since $\pi^{-1}(A) = A \cap \mu \in L[\mu]$, the proof goes through as usual.

Definition 5. Let M be a model of ZF, $(T_n)_{n<\omega}$ a sequence of trees, and let $a \subset \omega$ be Cohen generic over M. Let T' (resp. T_n) be the product (with infinite support) of the T_n as computed in M (resp. $M[a]$).

Question 6. Assume the (T_n) are ω_1 Suslin in M and T preserves ω_1. Then does T_n also preserve ω_1?

The next proposition shows that this is not the case for ω_2.

Proposition 7. Assume the (T_n) are ω_2 Suslin trees. Then forcing with T_n above $M[a]$ collapses ω_2.

Proof. I first show why T_n never is ω_2-cc, since the proof is much simpler.

In M, choose $(x_\alpha; \alpha \in \omega_2)$ to be elements of T such that x_α has height α. Denote each x_α as $(x^*_{\alpha,n} : n \in \omega)$. Choose in M, for every $\alpha \in \omega_2$ and $n \in \omega$, two distinct immediate successors of x^*_α, say $x^*_{\alpha,1}$ and $x^*_{\alpha,2}$. Let y^*_α be defined in $M[a]$ by $y^*_{\alpha} = x^*_{\alpha,a}$ (recall that a is a function from ω to 2). The set $\{y_\alpha; \alpha \in \omega_2\}$ is an antichain of T_n in $M[a]$; let $\alpha < \beta$ and $y_\alpha < y_\beta$; then $y_\alpha \leq y_\beta$ and since then $a(n) = \varepsilon$ iff $x^*_{\alpha,n} < x^*_{\beta,n}$, α would be a member of M; a contradiction.

The proof of the proposition is due to the referee (my original one was incorrect).

Theorem (CH). Suppose κ is a cardinal such that $\kappa^\omega = \kappa$ and $(T^n; n \in \omega)$ is a sequence of normal trees of height κ with levels of cardinality $\leq \kappa$. Let $P = \langle \mathcal{I}_{\leq \omega_1}, \leq \rangle$, where $q \geq p$ iff $p \supseteq q$. Then in any $P \ast (\prod_{n \in \omega} T^n)$-generic extension there is a function with domain contained in ω_1 (of the ground model) and range cofinal in κ.

Proof. The $T^n = \{t \in T^n; \text{ht}(t) = \gamma\}$ (where $\text{ht}(t)$ is the height of the node t in the tree T^n). Forcing with $\prod_{n \in \omega} T^n$ is equivalent to forcing with $\bigcup_{\gamma \in \omega} \prod_{n \in \omega} T^n_\gamma$, since as $\text{cf}(\kappa) > \omega_1$, the latter is dense in the former. We will abuse notation and write $\prod_{n \in \omega} T^n$ to mean $\bigcup_{\gamma \in \omega} \prod_{n \in \omega} T^n_\gamma$. Let B be a complete Boolean algebra in which $P \subset B$ is dense. First we must get a handle on B-valued terms for elements of $\prod_{n \in \omega} T^n$.

Definition. $(A_n; n \in \omega)$ is a spectrum iff

1) for all n, $2^{< \omega} \supseteq A_n$ is a maximal antichain in P, and

2) if $m < n$ and $p \in A_n$, then there is a $p \in A_m$ such that $p \geq p$.

Notation. Fix $\gamma < \kappa$, $x \in \Sigma$, iff there is a spectrum $(A_n(x); n \in \omega)$ such that

1) x is a function with domain $\bigcup_{n \in \omega} A_n(x)$,

2) if $p \in A_n(x)$, $A_{n+1}(x)$, then $x(p) \in \prod_{m \leq n} T^n_m$, while if $p \in A_n(x)$ for all n, then $x(p) \in \prod_{m<\omega} T^n_m$ (as calculated in the ground model, of course),

3) if $p \geq p$ are in $\text{dom}(x)$, then $x(p) \supseteq x(p)$; that is, $x(p)$ is a sequence extending the sequence $x(p)$, and

4) if $\forall p \geq p (p \neq A_n(x))$, then there are $p_1, p_2 \leq p$ such that $p_1, p_2 \in A_n(x)$ and $x(p_1)(k) \neq x(p_2)(k)$ for some $k \leq n$.

Let $\Sigma = \bigcup_{\gamma \in \omega} \Sigma_\gamma$. If $x \in \Sigma$, set $\text{Spec}(x) = (A_n(x); n \in \omega)$, where $(A_n(x); n \in \omega)$ is as
above. For z in the ground model, let $z \in V^B$ be the canonical name for z in a B

generic extension.

Notation. Suppose $x \in \Sigma_\gamma$. Define $\chi : \{(k, t) : t \in T^*_\gamma\} \to B$ by $\chi((k, t)) = \sup\{p \in P : x(p)(k) = t\}$. Then $\chi \in V^B$.

The following can be verified by straightforward calculations:

Claim 1. Suppose $x \in \Sigma_\gamma$, $n \in \omega$, $s \in \prod_{m \leq n} T^*_\gamma$, and $p \in P$. Then $p \models x((n + 1) = s$ if and only if $\exists p' \in P (p' \geq p$ and $x(p') \supset s)$.

Corollary. If $x \in \Sigma_\gamma$, $\emptyset \models x \in \prod_{m \in \omega} T^*_m$. Furthermore, if G is B generic over V, then $\chi^{V[G]} = \bigcup\{x(p) : p \in G \cap \text{dom}(x)\}$.

The value of the terms x for $x \in \Sigma$ is revealed by

Claim 2. Suppose $t \in V^B$ and $\emptyset \models t \in \prod_{m \in \omega} T^*_m$. Then there is an $x \in \Sigma_\gamma$ such that $\emptyset \models t = x$.

Proof. Define $A_n \subset 2^{<\omega}$ by

$$p \in A_n \text{ if and only if for some } s \in \prod_{m \leq n} T^*_m, p \models (n + 1) = s$$

and for all $p \geq p$, $p \in P$, $p \neq p$, $p \nvDash t \models (n + 1) = s$.

Then $(A_n : n \in \omega)$ is a spectrum.

Define a function x with domain $\bigcup_{n \in \omega} A_n$ as follows. Pick any $p \in \bigcup_{n \in \omega} A_n$. For any n such that $p \in A_n$, let $s \in \prod_{m \leq n} T^*_m$ be such that $p \models (n + 1) = s$ and set $x(p)(k) = s(k)$ for $k \leq n$. Then $x \in \Sigma_\gamma$. Suppose, for the sake of a contradiction, that $\emptyset \nvDash t = x$. Choose $p \in P$, $n \in \omega$, and $s, s' \in \prod_{m \leq n} T^*_m$ such that $s \neq s'$ and $p \models (n + 1) = s$ and $\models (n + 1) = s'$. Choose $p \in A_n$ such that $p \geq p$. Choose $k \leq n$ such that $s(k) \neq s'(k)$. Now $x(p)(k) = s(k)$ and so $x((k, s(k))) \geq p$. Consequently, $p \models (k, x(k)) \in x$ and so $p \nvDash x(k) = s(k)$. But $p \nvDash (n + 1) = s'$; hence $p \models x(k) = s'(k)$, contradicting that $s(k) \neq s'(k)$.

qed (Claim 2)

Notation. Suppose $S = (A_n : n \in \omega)$ and $S' = (A_n' : n \in \omega)$ are spectra. Define \leq, \leq_v, and $<_{ev}$ as follows:

$S \leq S'$ if and only if for all $n \in \omega$, if $p \in A_n'$, then there is a $\bar{p} \geq p$ such that $\bar{p} \in A_n$.

$S \leq_v S'$ if and only if there is an $n \in \omega$ such that for all $m \geq n$, if $p \in A_m'$, then there is a $\bar{p} \geq p$ such that $\bar{p} \in A_m$.

$S <_{ev} S'$ if and only if there is an $n \in \omega$ such that for all $m \geq n$, if $p \in A_m'$, then there is a $\bar{p} \geq p$ such that $\bar{p} \neq p$ and $\bar{p} \in A_n$.

Note that \leq partially orders spectra, and that \leq_v and $<_{ev}$ are transitive.

Claim 3. Suppose $x \in \Sigma_\gamma$ and S is a spectrum such that $S \geq \text{Spec}(x)$ and $\gamma \geq \beta + \omega$. Then there is a $y \in \Sigma_\gamma$ such that $\text{Spec}(y) = S$ and $\emptyset \models x \leq y$.

Proof. Say $S = (A_n : n \in \omega)$. For each $p \in A_n(x)$, let $(p_i(p)) : i < w(p)) \leq \omega$ enumerate inductively $\{q \in A_n : q \geq p\}$, and for each $p \in A_n(x)$ choose $(t_i(p)) : i < w(p))$, a sequence of distinct elements in T^*_γ such that $x(p)(n) = t_i(p)$ in T^*. (It is in order to insure branching in T^* adequate to make this possible that we are seeking $y \in \Sigma_\gamma$, where $\gamma \geq \beta + \omega$, rather than in, say, $\Sigma_{\beta+1}$. By recursion on n, for $p \in A_n$, define $x(p)(n + 1)$; if $n > 0$, for $k < n$, let $p \geq p$ be such that $p \in A_{n-k}$ and set $y(p)(k) = y(p)(k)$. To define $y(p)(n)$, let $p \geq p$ be such that $p \in A_n(x)$ and set $y(p)(n) = t_i(p)$, where $i < w(p)$ such that $p_i(p)$.

We must show that $y \in \Sigma_\gamma$ and that $\emptyset \models x \leq y$.

In the definition of Σ_γ, (1), (2), and (3) are not difficult to establish. (4) can be argued as follows. Suppose $\forall \gamma \geq \beta p \neq A_n$. If $\forall \gamma \geq \beta p \neq A_n(x)$, then there are p_1,
\[p_2 \in A_n(x) \text{ such that } p \geq p_1, p_2 \text{ and for some } k \leq n, x(p_1)(k) \neq x(p_2)(k). \] Choose \(p_1 \leq p \text{ and } p_2 \leq p \text{ such that } p_1, p_2 \in A_n \). Then, by construction, \(y(p_1)(k) > x(p_1)(k) \) in \(T^\circ \). Consequently, \(y(p_1)(k) \neq y(p_2)(k) \). On the other hand, if for some \(p \geq p, p \in A_n(x) \), choose \(p_1, p_2 \leq p \) such that \(p_1, p_2 \in A_n \). By construction, \(y(p_1)(n) \) and \(y(p_2)(n) \) are distinct elements in \(T^\circ \).

Finally, we claim that \(\emptyset \models \exists \chi \leq y \). Otherwise, there are \(n \in \omega \) and \(p, p' \in T^\circ \) such that \(s(n) \neq s(n) \) and \(p \models \exists \chi \models (n + 1) = s \) and \(p \models \exists \chi \models (n + 1) = s' \). In virtue of Claim 1, there are \(q_1, q_2 \) such that \(x(q_1) \models s \) and \(y(q_2) \models s' \). We may assume \(q_1 \in A_n(x) \) and \(q_2 \in A_n \). By construction, then, \(x(q_1)(n) < y(q_2)(n) \) in \(T^\circ \). This contradicts that \(s(n) \neq s(n) \) in \(T^\circ \). \(\text{qed(Claim 3)} \)

Claim 4. (a) Suppose \(S \) is a spectrum. Then there is a spectrum \(S' \) such that \(S \leq S' \) and \(S <_{\text{ev}} S' \).

(b) Suppose \(S_0 \) and \(S_1 \) are spectra. Then there is an \(S \) such that \(S_0, S_1 \leq S \).

(c) If \((S_n : n \in \omega) \) is a sequence of spectra, then there is a spectrum \(S \) such that, for all \(n \in \omega \), \(S_n \leq_{\text{ev}} S \).

Proof. (a) Suppose \(S = (A_n : n \in \omega) \). Set \(S' = (A'_n : n \in \omega) \), where \(A'_n = \{ p \models i : p \in A_n \text{ and } i = 0, 1 \} \).

(b) Suppose, for \(i = 0, 1 \), \(S_i = (A'_n : n \in \omega) \), where \(A_n \) is defined by recursion on \(n \) as follows: \(A_0 \) is a maximal antichain in \(P \) such that if \(p \in A_0 \), then there are \(p, p' \geq p \) such that \(p \in A_0^0 \) and \(p' \in A_0^1 \); and \(A_{n+1} \) is a maximal antichain in \(P \) such that if \(p \in A_{n+1} \), then there are \(p, p' \in A_{n+1}^0, p' \in A_{n+1}^1 \) and \(p' \models p \).

(c) Suppose \(S_\omega = (A'_n : n \in \omega) \). Set \(S = (A_n : n \in \omega) \), where \(A_n \) is defined by recursion on \(n; A_0 = A_0^0 \), and \(A_{n+1} \) is a maximal antichain in \(P \) such that if \(p \in A_{n+1} \), then there are \(p, p_0, \ldots, p_n \geq p \) such that \(p \in A_n \) and, for \(k \leq n, p_k \in A_{n+1} \).

Claim 5 (CH). There is a sequence of spectra \((S_\alpha : \alpha < \omega_1) \) that satisfy the following conditions:

1) Let \(S_0 = (A_n : n \in \omega) \). Then the \(A_n \)'s are pairwise disjoint.
2) If \(\alpha < \beta < \omega_1 \), then \(S_{\alpha} \leq_{\text{ev}} S_{\beta} \).
3) If \(S \) is any spectrum, then there is an \(\alpha < \omega_1 \) such that \(S \leq S_{\alpha} \).

Proof. Using CH to enumerate all spectra in order type \(\omega_1 \) and Claim 4, it is straightforward to construct such a sequence by recursion on \(\alpha \). \(\text{qed(Claim 5)} \)

We next seek to define \((A_\alpha : \alpha < \omega_1) \) for which the following conditions hold:

1) \(A_\alpha \subseteq \Sigma, |A_\alpha| = \kappa \).
2) If \(\alpha \neq \beta < \omega_1 \), then \(\emptyset \models \exists \chi \models \chi \).
3) If \(t \models \exists \chi \leq t \models \exists \chi \).

This will suffice to prove the theorem.

Fix \(\alpha < \omega_1 \). First let \((x_\beta : \beta < \kappa) \) enumerate, with repetitions unbounded in \(\kappa \), the set \(\{ x \in \Sigma : \text{Spec}(x) \leq S_\alpha \} \) in such a way that if \(x_\beta \in \Sigma \), then \(\gamma \leq \beta \). This is possible because of our hypotheses that \(\kappa^{\omega_1} = \kappa \) and that the levels of the \(T^\circ \) have cardinality \(\leq \kappa \). Next, for \(\beta < \kappa \), using Claim 3, choose \(z_\beta \models \Sigma \models \alpha \mid z_\beta \leq z_\beta \). Finally, again using Claim 3, choose \(z_\beta \models \Sigma \models z_\beta \leq z_\beta \) such that \(\emptyset \models z_\beta \leq y_\beta \) and \(A_n(y_\beta) = \{ p_\models i : p \in A_n \text{ and } i = 0, 1 \} \) (where \(S_\alpha = (A_n : n \in \omega) \)). Set \(A_\alpha = \{ y_\beta : \beta < \kappa \} \). Goal (1) is then evident.
Claim 6. If $\beta < \beta$, then $\emptyset \models y_{\beta}^\alpha \approx y_{\beta}^\alpha$.

Proof. Suppose not. Say $p \models y_{\beta}^\alpha \not\approx y_{\beta}^\alpha$. As $y_{\beta}^\alpha \in \Sigma_{\omega^2 \cdot \beta + \omega + \omega}$, $y_{\beta}^\alpha \in \Sigma_{\omega^2 \cdot \beta + \omega + \omega}$ and $\omega^2 \cdot \beta + \omega + \omega < \omega^2 \cdot \beta + \omega + \omega$, it follows that $p \models y_{\beta}^\alpha \approx y_{\beta}^\alpha$. Furthermore, as $\emptyset \models z_{\beta} \leq y_{\beta}^\alpha$ and $z_{\beta} \in \Sigma_{\omega^2 \cdot \beta + \omega + \omega}$ and $\omega^2 \cdot \beta + \omega + \omega < \omega^2 \cdot \beta + \omega + \omega$, it follows that $p \models y_{\beta}^\alpha < z_{\beta}$. Now, Spec($z_{\beta}$) = $S_\alpha \approx S_\rho$. Thus, using (1) of Claim 5, there is an $n \in \omega$ and a $p \leq p$ such that $p \in A_n$ (where $S_\alpha = \{ A_n : n \in \omega \}$). Then $p \models 0$, $p \not\models 1 \in A_n(y_{\beta}^\alpha)$. By (4) in the definition of Σ, there is a $k \leq n$ such that $y_{\beta}^\alpha(p \cdot i)(k) \neq y_{\beta}^\alpha(p \cdot i)(k)$. Choose $i = 0$, 1 such that $y_{\beta}^\alpha(p \cdot i)(k) \neq z_{\beta}(p)(k)$. Then $p \models 0 \cdot i = z_{\beta}$, contradicting that $p \models y_{\beta}^\alpha < z_{\beta}$. qed (Claim 6)

Claim 7. Suppose $t \in V^\emptyset$ and $\emptyset \models t \in \prod_{n \in \omega} \mathbb{T}^n$. Then there is an $\alpha < \omega_1$ such that

$$\models \{ y \in A_\alpha : \emptyset \models \overline{y} \geq t \} = \kappa.$$

Proof. Choose $x \in \Sigma$ such that $\emptyset \models \overline{x} = t$. Choose $\alpha < \omega_1$ such that Spec(x) $\leq S_\beta$. Choose any $\beta < \kappa$ such that $x_{\beta} = x$ (where x_{β}; $\beta < \kappa$ is as in the construction of A_β). There are κ many such β by our choice of $(x_{\beta}; \beta < \kappa)$. By construction, $\emptyset \models x_{\beta} \leq y_{\beta}^\alpha$. qed (Claim 7)

This completes the proof of the theorem.

Question. Is it possible to find a sequence $(T_n)_{n \in \omega}$ of ω_2 trees such that $\forall n \prod_{m < n} T_m$ is ω_2-cc, but the iteration of the T_n with countable support collapses ω_2? This would show that there is no way to extend Shelah’s notion of properness to preserve higher cardinals — more precisely, that there is no property H such that

1) if P is ω_2-cc then P has the property H,
2) H is preserved by countable support iteration, and
3) if P has the property H then ω_2 is preserved in any P generic extension.

§III. Specialization of Suslin trees.

Definition 1. Let T be a κ^+ tree such that any level (except the least one) has cardinality $\geq \kappa$. Define A_T as follows: $p \in A_T$ iff $T \models p$, card(p) $\leq \kappa$ and p is an antichain in T and the root of T is not in p; $p \leq q$ iff $p \models q$.

Clearly A_T is κ-closed (for every regular κ). It is well known (see, for example, [Je]) that when T is an ω_1 Suslin tree (in fact T Aronszajn is enough) A_T is ω_1-cc. This is no longer true for ω_2 (see [LS]) However.

Proposition 2. Let κ be a regular cardinal, and let T be the canonical κ^+ Suslin tree. Then A_T is κ^+-cc.

Proof. Using the standard condensation argument, it is enough to show the following: let cof(μ) = κ, $p \in A_T$, $T \models X$, $X \in L_{\omega_1}$, and X a maximal antichain in $A_p = A_T \cap L_{\omega_1}$. Then p is compatible with some element in X:

Set $a = b \cap T \mu$ and $b = p - a$. Let $I < \kappa$, card(I) $\leq \kappa$, be such that for every x in b there is $x \in I$ such that $B_i \leq x$ (recall that $T_\mu = \{ B_\xi : \xi < \kappa \}$, where the $(B_\xi)_{\xi < \kappa}$ are $C(\mu)$-generic). It is enough to show that for any $f \in C(\mu)$ and $g \in C(\mu)$, $g \leq f$, there is an $h \leq g$ such that $h \models_{\text{cond}} p$ is compatible with some d in X, where p is the canonical name for $a \cup \{ B_\xi : \xi \in I \}$. I may assume dom $q \models I$ and $\forall \xi \in I \text{ dom } g \forall x \in a |g(\xi)| > |x|$, for $\xi \in I$ choose an immediate successor $g' (\xi)$ of $g(\xi)$. Let $c = a \cup \{ g' (\xi) : \xi \in I \}$. Then $c \in A_p$. Let $d \in X$ be compatible with c. Then define h as follows: dom $h = \text{ dom } g$ and, for $\xi \in \text{ dom } g$, $h(\xi) = \text{ some } u \geq g(\xi)$ distinct and above all the elements in d. It is easy to check that h is as needed.
The following propositions show that a variety of situations are possible.

Proposition 3. There is an ω_1 normal tree T such that T is not Suslin but A_T is ω_2-cc. Moreover, we may assume that forcing with T collapses ω_2 on ω_1.

Proof. The proof looks like that of Proposition II.2. Let F be as there. Define the tree essentially as the canonical ω_2 Suslin tree, together with the $(c_f; f \in F)$ as in Proposition II.2 except that c is replaced by

$$\forall x \in T, \forall f: \omega_1 \rightarrow \omega_2 \exists x x \notin c_f[x].$$

The following induction hypothesis $I(\mu)$ is maintained during the construction:

$$\forall x(|x| < \mu \Rightarrow \exists y |y| = \mu \text{ and } \forall f (c_f \leq x \text{ iff } c_f \leq y)).$$

The forcing $C(\mu)$ (to build T_μ) when $\text{cof}(\mu) = \omega_1$ is as in the canonical tree with the additional requirement that

$$d \leq d \Rightarrow \forall i \in \text{dom } d, \forall f \in F (c_f \leq d(i) \text{ iff } c_f \leq d(i)).$$

The definition of the c_f with the mentioned properties is straightforward. The sequence (c_f) ensures that forcing with T collapses ω_2 on ω_1. Following the proof of Proposition III.2, it is easy to check that A_T is ω_2-cc.

Proposition 4. There are ω_2 Suslin trees T_1 and T_2 such that forcing with $A_{T_1} \times T_2$ is not equivalent to forcing with $A_{T_1} \times A_{T_2}$.

Proof. Let (T_1, T_2) be the canonical pair of ω_2 Suslin trees. It is easy to check (as in Proposition 2) that $A_{T_1} \times T_2$ is ω_2-cc. But since $A_{T_1} \times T_1$ is clearly not ω_2-cc, $A_{T_1} \times A_{T_2}$ cannot be isomorphic to $A_{T_1} \times A_{T_2}$.

(*Note. I suspect that the proposition is true for every pair of tree, since the converse seems to imply a partition property on $|T|$. But I do not know how to prove it.*)

Proposition 5. 1) Let T be the canonical ω_2 Suslin tree. Then forcing with $A_T \times T$ preserves the cardinals.

2) There is an ω_2 Suslin tree T such that A_T is ω_2-cc but forcing with $A_T \times T$ collapses ω_2.

Proof. 1) It is easy to check that $A_T \times T$ satisfies

$$\forall p \exists q \leq p \{r \in A_T \times T/r \leq q\} \text{ is } \omega_2\text{-cc}$$

(if $p = (a, x)$, choose $q = (b, y)$ where y is above some element in b).

2) The idea is to build a tree T such that

a) $x \in T \Rightarrow x: |x| < \omega_2 \rightarrow \omega_1$,

b) T is ω-closed, and

(*) $\forall x, y \in T \forall \gamma \leq |x| \gamma \times x \in T$ where $\gamma \times x$, is defined as follows: $z = \gamma \times x$, iff $|z| = |y| + (|x| - \gamma)$ and $\forall \zeta < |y| \gamma \zeta = y(\zeta)$ and $\forall \zeta = |x| + \eta, \eta < |x| - \gamma, z(\zeta) = x(\gamma + \eta)$.

The construction of T is that of the canonical Suslin tree except that the forcing construction $C(\mu)$ is made only when $\text{cof}(\mu) = \omega_1$ and $\forall x < \mu \mu = \mu - x$ (for the other μ, branches are added in some canonical way so that the tree is normal and satisfies (*)). The points in $T(\mu)$ are branches added by some generic on $C(\mu)$ and the branches having the same tail as one in the generic. Noting that then every branch in T_μ still is generic over $T|\mu$, we can easily show that T and A_T are ω_2-cc.

In $L[A]$ (where $A \subset T$ is A_T-generic) we can define the family $(c_s; s \in X)$ for
some $X \subset F'$, where $F' = \{ s : |s| < \omega_1 \rightarrow \omega_2 \}$, as follows. Let $(x(x)/x < \omega_2)$ be an enumeration of T; then

$$c_{x \rightarrow x} = c_{x \rightarrow x} \cdot x(x) \quad \text{if } x(x) \in A, \quad c_{x} = \bigcup_{x \rightarrow x} c_{x} \quad \text{for limit } |s|.$$

It is enough (and easy) to check (by using the genericity of A) that for s such that c_{x} is defined, $\{ c_{x \rightarrow x} : x \in A \}$ is a maximal antichain of size ω_2 above c_{x}, and that $\forall x \in T \forall x \rightarrow x \exists y (x \not\in c_{f_{x \rightarrow y}}$ or $c_{f_{x \rightarrow y}}$ is undefined).

As a final fact, the following variation of A_T (namely the forcing to specialize the tree) can be used in the [JJJ] construction (or its extension to higher cardinals) to produce a Π^1_2 singleton.

Let T be an ω_1 tree. Set $B_T = \{ p : T \supset \text{dom } p; \text{card(dom } p) < \omega_2; \forall x \in \text{dom } p \ p(x) \in \omega; \forall x, y \in \text{dom } p \ x < y \Rightarrow p(x) \neq p(y) \}$. It is not difficult to check that forcing with B_T adds a specializing function to T and that if T is the canonical Suslin tree then B_T is ω_1-cc (the proof follows that of Proposition 2).

Let $(T_n)_{n \in \omega}$ be the canonical sequence of ω_1 Suslin trees. Using the B_{T_n}, we can define a forcing notion P that produces a real a, for $n \in \omega$ a cofinal branch in T_n, and for $n \notin \omega$ a specializing function in T_n. This forcing notion preserves the cardinals. Moreover, a can "code" these branches and specializing functions.

This will be developed and extended in a forthcoming paper.

Question. Is it possible to define in L a sequence of ω_1 Suslin trees T_n and to generically add a real a that preserves the cardinals and such that there is in $L(a)$ for $n \in \omega$ a cofinal branch in T_n and for $n \notin \omega$ a specializing function in T_n?

REFERENCES

DÉPARTEMENT DE MATHÉMATIQUES
UNIVERSITÉ DE SAVOIE
73101 CHAMBERY, FRANCE