Seminars take place in the seminar room, first floor of the building Le Chablais, (see How to come ?).

Next seminar:

Thursday 8th December 2022 at 14h Samuel Boissière (Laboratoire de mathématiques et applications, Poitiers),
Les droites sur une hypersurface cubique cuspidale cyclique

Abstract: (Hide abstracts)
Je présenterai des travaux récents qui mettent en scène des hypersurfaces cubiques projectives complexes de dimension trois et les revêtements cycliques ramifiés au-dessus, pour étudier la riche et belle géométrie de la variété de Fano des droites qu'ils contiennent et le comportement de l'automorphisme du revêtement lors de la dégénérescence vers une cubique à singularités isolées.

The seminar of the team Géométrie is under the responsibility of Michel Raibaut.
Settings: See with decreasing date. Hide abstracts
Other years: 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, all years together.

Year 2023

Thursday 19th January 2023 at 14h Tanguy Rivoal (Institut Fourier, Grenoble),
À venir

Abstract: (Hide abstracts)
À venir

Thursday 26th January 2023 at 14h Michel Vaquié (Institut de Mathématiques de Toulouse),
À venir

Abstract: (Hide abstracts)
À venir

Thursday 2nd February 2023 at 14h Remi Jaoui (Institut Camille Jordan, Lyon),
À venir

Abstract: (Hide abstracts)
À venir

Thursday 23rd February 2023 at 14h Olivier Benoist (ENS Paris),
À venir

Abstract: (Hide abstracts)
À venir

Thursday 2nd March 2023 at 14h Pedro Gonzalez Perez (Universidad Complutense de Madrid),
Resolving singularities of curves with one toric morphism

Abstract: (Hide abstracts)
We give an explicit positive answer, in the case of reduced curve singularities, to a question of B. Teissier about the existence of a toric embedded resolution after reembedding. In the case of a curve singularity (C, O) contained in a non singular surface S such a reembedding may be defined in terms of a sequence of maximal contact curves of the minimal embedded resolution of C. We prove that there exists a toric modification, after reembedding, which provides an embedded resolution of C. We use properties of the semivaluation space of S at O to describe how the dual graph of the minimal embedded resolution of C may be seen on the local tropicalization of S associated to this reembedding. This is a joint work with Hussein Mourtada and Ana Belén de Felipe.

The seminar of the team Géométrie is under the responsibility of Michel Raibaut.
Settings: See with decreasing date. Hide abstracts
Other years: 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, all years together.