A semantical proof of the strong normalization theorem for full propositional classical natural deduction

Received: 12 November 2004 / Published online: 10 November 2005 – © Springer-Verlag 2005

Abstract. We give in this paper a short semantical proof of the strong normalization for full propositional classical natural deduction. This proof is an adaptation of reducibility candidates introduced by J.-Y. Girard and simplified to the classical case by M. Parigot.

1. Introduction

This paper gives a semantical proof of the strong normalization of the cut-elimination procedure for full propositional classical logic written in natural deduction style. By full we mean that all the logical connectives (⊥, →, ∧ and ∨) are considered as primitive. We also consider the three reduction relations (logical, commutative and classical reductions) necessary to obtain the subformula property (see [5]).

Until very recently (see the introduction of [5] for a brief history), no proof of the strong normalization of the cut-elimination procedure was known for full logic.

In [5], Ph. De Groote gives such a proof by using a CPS-style transformation from full classical logic to implicative intuitionistic logic, i.e., the simply typed λ-calculus.

A very elegant and direct proof of the strong normalization of the full logic is given in [6] but only the intuitionistic case is given.

R. David and the first author give in [3] a direct and syntactical proof of this result. This proof is based on a characterization of the strongly normalizable deductions and a substitution lemma which stipulates the fact that the deduction obtained while replacing in a strongly normalizable deduction an hypothesis by another strongly normalizable deduction is also strongly normalizable. The same idea is used in [2] to give a short proof of the strong normalization of the simply typed $\lambda\mu$-calculus of [9].

R. Matthes recently found another semantical proof of this result (see [7]). His proof uses a complicated concept of saturated subsets of terms.

Our proof is a generalization of M. Parigot’s strong normalization result of the $\lambda\mu$-calculus (see [10]) for the types of J.-Y. Girard’s system \mathcal{F} using reducibility candidates. We also use a very technical lemma proved in [3] concerning
commutative reductions. To the best of our knowledge, this is the shortest proof of a such result.

The paper is organized as follows. In section 2, we give the syntax of the terms and the reduction rules. In section 3, we define the reducibility candidates and establish some important properties. In section 4, we show an "adequation lemma" which allows to prove the strong normalization of all typed terms.

2. The typed system

We use notations inspired by the paper [1].

Definition 2.1

1. The types are built from propositional variables and the constant symbol \bot with the connectors \rightarrow, \land and \lor.
2. Let X and A be two disjoint alphabets for distinguishing the λ-variables and μ-variables respectively. We code deductions by using a set of terms T which extends the λ-terms and is given by the following grammars:

$$
T := X \mid \lambda X.T \mid (T \ E) \mid \langle T, T \rangle \mid \omega_1 T \mid \omega_2 T \mid \mu A.T \mid (A \ T)
$$

$$
E := T \mid \pi_1 \mid \pi_2 \mid [X.T, X.T]
$$

An element of the set E is said to be an E-term.
3. The meaning of the new constructors is given by the typing rules below where Γ (resp. Δ) is a context, i.e. a set of declarations of the form $x : A$ (resp. $a : A$) where x is a λ-variable (resp. a is a μ-variable) and A is a type.

$$
\frac{\Gamma, x : A \vdash t : B; \Delta}{\Gamma \vdash \lambda x.t : A \rightarrow B; \Delta} \quad \frac{\Gamma \vdash u : A \rightarrow B; \Delta \quad \Gamma \vdash v : A; \Delta}{\Gamma \vdash (u \ v) : B; \Delta} \\
\frac{\Gamma \vdash u : A; \Delta}{\Gamma \vdash (u, v) : A \land B; \Delta} \quad \Delta \quad \frac{\Gamma \vdash v : B; \Delta}{\Delta \quad \Gamma \vdash (t \ \pi_1)} : A \land B; \Delta \quad \frac{\Gamma \vdash t : A \land B; \Delta \quad \Delta \quad \Gamma \vdash (t \ \pi_2)} : B; \Delta
$$

$$
\frac{\Gamma \vdash t : A \lor B; \Delta \quad \Gamma \vdash u : C; \Delta \quad \Gamma, y : B \vdash v : C; \Delta}{\Gamma \vdash (t \ [x, u, y, v]) : C; \Delta}
$$

$$
\frac{\Gamma \vdash t : A; \Delta \quad \Delta \quad \Gamma \vdash a : A}{\Gamma \vdash (a \ t) : \bot; \Delta \quad \Delta \quad \Gamma \vdash \mu a.t : A; \Delta}
$$
4. The cut-elimination procedure corresponds to the reduction rules given below. There are three kinds of cuts:

(a) The logical cuts: They appear when the introduction of a connective is immediately followed by its elimination. The corresponding rules are:

- \((λx.u \ ν) \triangleright u[x := ν] \)
- \((t_1, t_2) \triangleright t_i \)
- \((v_0.t \ [x_1.u_1, x_2.u_2]) \triangleright u_1[x_1 := t] \)

(b) The permutative cuts: They appear when the elimination of the disjunction is followed by the elimination rule of a connective. The corresponding rule is:

- \((t \ [x_1.u_1, x_2.u_2]) \triangleright (t \ [x_1.(u_1 \ ν), x_2.(u_2 \ ν)]) \)

(c) The classical cuts: They appear when the classical rule is followed by the elimination rule of a connective. The corresponding rule is:

- \((u.\quad t \ ν) \triangleright u.\quad t[a := ν] \), where \(t[a := ν] \) is obtained from \(t \) by replacing inductively each subterm in the form \((a \ ν) \) by \((a \ ν) \).

Notation 2.1 Let \(t \) and \(t' \) be \(E \)-terms. The notation \(t \triangleright t' \) means that \(t \) reduces to \(t' \) by using one step of the reduction rules given above. Similarly, \(t \triangleright^* t' \) means that \(t \) reduces to \(t' \) by using some steps of the reduction rules given above.

The following result is straightforward.

Theorem 2.1 If \(Γ \vdash t : A ; \Delta \) and \(t \triangleright^* t' \) then \(Γ \vdash t' : A ; \Delta \).

We have also the confluence property (see [1], [5] and [8]).

Theorem 2.2 If \(t \triangleright^* t_1 \) and \(t \triangleright^* t_2 \), then there exists \(t_3 \) such that \(t_1 \triangleright^* t_3 \) and \(t_2 \triangleright^* t_3 \).

Definition 2.2 An \(E \)-term \(t \) is said to be strongly normalizable if there is no infinite sequence \((t_i)_{i<ω}\) of \(E \)-terms such that \(t_0 = t \) and \(t_i \triangleright t_{i+1} \) for all \(i < ω \).

The aim of this paper is to prove the following theorem.

Theorem 2.3 Every typed term is strongly normalizable.

In the rest of the paper we consider only typed terms.

3. Reducibility candidates

Lemma 3.1 Let \(t, u \) and \(u' \) be \(E \)-terms such that \(u \triangleright u' \), then:

1. \(u[x := t] \triangleright u'[x := t] \) and \(u[a := ν] t \triangleright u'[a := ν] t \).
2. \(t[x := u] \triangleright^* t[x := u] \) and \(t[a := ν] u \triangleright^* t[a := ν] u' \).

Proof. 1) By induction on \(u \). 2) By induction on \(t \). \(\square \)

Notation 3.1 The set of strongly normalizable terms (resp. \(E \)-terms) is denoted by \(N' \) (resp. \(N'') \). If \(t \in N'' \), we denote by \(η(t) \) the maximal length of the reduction sequences of \(t \). We denote also \(N'^{<ω} \) the set of finite sequences of \(N'' \).

Definition 3.1 Let \(\bar{w} = w_1 \ldots w_ρ \in N'^{<ω} \), we say that \(\bar{w} \) is a nice sequence iff \(w_1 \) is the only \(E \)-term in \(\bar{w} \) which can be in the form \([x.u, y.v]\).
Remark 3.1 The intuition behind the notion of the nice sequences will be given in the proof of the lemma 3.3.

Lemma 3.2 Let $\widetilde{w} = w_1 \ldots w_n$ be a nice sequence and $\widetilde{w}' = w_1' \ldots w_n'$ where $w_i \triangleright w_i'$. Then \widetilde{w}' is also a nice sequence.

Proof. This comes from the fact that if $\varepsilon \vdash [x, u, y, v]$ then $\varepsilon = [x, p, y, q]$, where $p \triangleright u$ or $q \triangleright v$.

\square

Notation 3.2 1. The empty sequence is denoted by \emptyset.
2. Let $\widetilde{w} = w_1 \ldots w_n$ a sequence of \mathcal{E}-terms and t a term. Then $(t \triangleright \widetilde{w})$ is t if $n = 0$ and $((t \triangleright w_1) \triangleright w_2 \ldots \triangleright w_n)$ if $n \neq 0$. The term $t[a := \ast \widetilde{w}]$ is obtained from t by replacing inductively each subterm in the form $(a \cdot v)$ by $(a \cdot (v \triangleright \widetilde{w}))$.
3. If $\widetilde{w} = w_1 \ldots w_n$ is a nice sequence, we denote $\eta(\widetilde{w}) = \sum_{i=1}^{n} \eta(w_i)$.

Lemma 3.3 Let \widetilde{w} be a nice sequence.

1. $(x \triangleright \widetilde{w}) \in \mathcal{N}$.
2. If $u \in \mathcal{N}$ and $(t[x := u] \triangleright \widetilde{w}) \in \mathcal{N}$, then $((\lambda x. t) \triangleright u) \in \mathcal{N}$.
3. If $t_1, t_2 \in \mathcal{N}$ and $(t_1 \triangleright \widetilde{w}) \in \mathcal{N}$, then $((t_1, t_2) \triangleright \pi_1 \triangleright \widetilde{w}) \in \mathcal{N}$.
4. If $t, u_1, u_2 \in \mathcal{N}$ and $u_1[x_1 := t] \in \mathcal{N}$, then $(\omega \triangleright t \cdot (x_1, u_1, x_2, u_2)) \in \mathcal{N}$.
5. If $t[a := \ast \widetilde{w}] \in \mathcal{N}$, then $(\mu a. t \cdot \triangleright \widetilde{w}) \in \mathcal{N}$.

Proof. 1. Let $\widetilde{w} = w_1 \ldots w_n$. All reductions over $(x \triangleright \widetilde{w})$ take place in some w_i, because \widetilde{w} is a nice sequence, and therefore the w_i cannot interact between them via commutative reductions. Since all w_i are strongly normalizable, then $(x \triangleright \widetilde{w})$ itself is strongly normalizable.

2. It suffices to prove that: If $((\lambda x. t) \triangleright u) \triangleright s$, then $s \in \mathcal{N}$. We process by induction on $\eta(u) + \eta(t[x := u] \triangleright \widetilde{w})$. Since $\widetilde{w} = w_1 \ldots w_n$ is a nice sequence, the w_i cannot interact between them via commutative reductions. We have four possibilities for the term s.
 - $s = ((\lambda x. t') \triangleright \widetilde{w})$ where $t \triangleright t'$: By the lemma 3.1, $(t'[x := u] \triangleright \widetilde{w}) \in \mathcal{N}$ and $\eta(u) + \eta(t'[x := u] \triangleright \widetilde{w}) < \eta(u) + \eta((t[x := u] \triangleright \widetilde{w}))$, then, by induction hypothesis, $s \in \mathcal{N}$.
 - $s = ((\lambda x. u') \triangleright \widetilde{w})$ where $u \triangleright u'$: By the lemma 3.1, $(t[x := u'] \triangleright \widetilde{w}) \in \mathcal{N}$ and $\eta(u') + \eta(t[x := u'] \triangleright \widetilde{w}) < \eta(u) + \eta((t[x := u] \triangleright \widetilde{w}))$, then, by induction hypothesis, $s \in \mathcal{N}$.
 - $s = ((\lambda x. t \triangleright \widetilde{w})' \triangleright \widetilde{w})$ where $\widetilde{w}' = w_1 \ldots w_n$ and $w_i \triangleright w_i'$: By the lemma 3.2, \widetilde{w}' is a nice sequence. We have $(t[x := u] \triangleright \widetilde{w})' \in \mathcal{N}$ and $\eta(u) + \eta((t[x := u] \triangleright \widetilde{w}') < \eta(u) + \eta((t[x := u] \triangleright \widetilde{w}))$, then, by induction hypothesis, $s \in \mathcal{N}$.
 - $s = (t[x := u] \triangleright \widetilde{w})$: By hypothesis, $s \in \mathcal{N}$.
3. Same proof as 2).
4. Same proof as 2).
5. It suffices also to prove that: If $(\mu a. t \triangleright \widetilde{w}) \triangleright s$, then $s \in \mathcal{N}$. We process by induction on the pair $(\ell g(\widetilde{w}), \eta(t[a := \ast \widetilde{w}]) + \eta(\widetilde{w}))$ where $\ell g(\widetilde{w})$ is the number of the \mathcal{E}-terms in the sequence \widetilde{w}. We have three possibilities for the term s.
 - $s = (\mu a. t' \triangleright \widetilde{w})$ where $t \triangleright t'$: By the lemma 3.1, $t'[a := \ast \widetilde{w}] \in \mathcal{N}$ and $\eta(t'[a := \ast \widetilde{w}]) < \eta(t[a := \ast \widetilde{w}])$, then, by induction hypothesis, $s \in \mathcal{N}$.

- (continued)
A semantical proof of the strong normalization theorem

- \(s = \mu a.t \) where \(\bar{w}' = w_1 \ldots w_i \ldots w_n \) and \(w_i \vdash w_i' \); by the lemma 3.2, \(\bar{w}' \) is a nice sequence and, by the lemma 3.1, \(t[a := \bar{w}' \bar{w}] \in \mathcal{N} \) and \(\eta(t[a := \bar{w}]) < \eta(t[a := \bar{w}']) + \eta(\bar{w}) \), then, by induction hypothesis, \(s \in \mathcal{N} \).

- \(s = \mu a.t[a := w_1 \bar{w}'] \) where \(\bar{w}' = w_2 \ldots w_n \): It is obvious that \(\bar{w}' \) is a nice sequence and \(lg(\bar{w}') < lg(\bar{w}) \). We have \(t[a := w_1 \bar{w}'] \in \mathcal{N} \), then, by induction hypothesis, \(s \in \mathcal{N} \).

\[\square \]

Lemma 3.4 Let \(\bar{w} \) be a nice sequence.
If \(t[x.(u \bar{w}), y.(v \bar{w})] \in \mathcal{N} \), then \(t[x.u, y.v] \in \mathcal{N} \).

Proof. This is proved by that, from an infinite sequence of reduction starting from \((t[x.u, y.v]) \bar{w} \), an infinite sequence of reduction starting from \((t[x.(u \bar{w}), y.(v \bar{w})) \) can be constructed. A complete proof of this result is given in [3] in order to characterize the strongly normalizable terms.

\[\square \]

Definition 3.2 1. We define three functional constructions \((\to, \land, \lor) \) on subsets of terms:
(a) \(K \to L = \{ t \in T / \text{for each } u \in K, (t u) \in L \} \).
(b) \(K \land L = \{ t \in T / (t \pi_1) \in K \text{ and } (t \pi_2) \in L \} \).
(c) \(K \lor L = \{ t \in T / \text{for each } u, v \in \mathcal{N}: \text{if } (\text{for each } r \in K, s \in L: t[x := r] \in \mathcal{N} \text{ and } v[y := s] \in \mathcal{N} \text{, then } (t[x.u, y.v]) \in \mathcal{N} \} \).

2. The set \(\mathcal{R} \) of the reducibility candidates is the smallest set of subsets of terms containing \(\mathcal{N} \) and closed by the functional constructions \(\to, \land, \lor \).

3. Let \(\bar{w} = w_1 \ldots w_n \) be a sequence of \(\mathcal{E} \)-terms, we say that \(\bar{w} \) is a good sequence iff for each \(1 \leq i \leq n, w_i \) is not in the form \([x.u, y.y] \).

Lemma 3.5 If \(R \in \mathcal{R} \), then:
1. \(R \subseteq \mathcal{N} \).
2. \(R \) contains the \(\lambda \)-variables.

Proof. We prove, by simultaneous induction, that \(R \subseteq \mathcal{N} \) and for each \(\lambda \)-variable \(x \) and for each good sequence \(\bar{w} \in \mathcal{N}^{\lambda<\omega}, (x \bar{w}) \in R \).

- \(R = \mathcal{N} \): trivial.
- \(R = R_1 \to R_2 \): Let \(t \in R \). By induction hypothesis, we have \(x \in R_1 \), then \((t x) \in R_2 \), therefore, by induction hypothesis, \((t x) \in \mathcal{N} \) hence \(t \in \mathcal{N} \).
- \(R = R_1 \land R_2 \): Let \(t \in R \), then \((t \pi_1) \in R_1 \) and, by induction hypothesis, \((t \pi_1) \in \mathcal{N} \), therefore \(t \in \mathcal{N} \).
- \(R = R_1 \lor R_2 \): Let \(t \in R \), then \((t \pi_1) \in R_1 \) and, by induction hypothesis, \((x \bar{w}) \in R_1 \), therefore \((x \bar{w}) \in R \).
- \(R = R_1 \lor R_2 \): Let \(t \in R \) and \(y, z \) two \(\lambda \)-variables. By induction hypothesis, we have, for each \(u \in R_1 \subseteq \mathcal{N} \) and \(v \in R_2 \subseteq \mathcal{N} \), \(\eta(y := u) = u \in \mathcal{N} \) and \(\eta(z := v) = v \in \mathcal{N} \), therefore \((t [y.y, z.z]) \in \mathcal{N} \), therefore \(t \in \mathcal{N} \).
- \(R = R_1 \lor R_2 \): Let \(t \in R \) and \(u, v \in \mathcal{N} \) such that for each \(r \in R_1 \), \(s \in R_2, u[r := r] \in \mathcal{N} \) and \(v[s := s] \in \mathcal{N} \). We have \([x.u, y.v] \in \mathcal{N} \) because
K. Nour, K. Saber

u and $v \in \mathcal{N}$. Thus $\bar{w} \[x.u, y.v\]$ is a nice sequence, and by the lemma 3.3, $(x \bar{w} \[x.u, y.v\]) \in \mathcal{N}$, therefore $(x \bar{w}) \in R$.

\[\square\]

Notation 3.3 For $S \subseteq \mathcal{N}^{\leq \omega}$, we define $S \to K = \{t \in T \mid \text{for each } \bar{w} \in S, (t \bar{w}) \in K\}$.

Definition 3.3 A set $X \subseteq \mathcal{N}^{\leq \omega}$ is said to be nice iff for each $\bar{w} \in X$, \bar{w} is a nice sequence.

Lemma 3.6 Let $R \in \mathcal{R}$, then there exists a nice set X such that $R = X \to \mathcal{N}$.

Proof. By induction on R.

- $R = \mathcal{N}$: Take $X = \{\emptyset\}$, it is clear that $\mathcal{N} = \{\emptyset\} \to \mathcal{N}$.
- $R = R_1 \to R_2$: We have $R_2 = X_2 \to \mathcal{N}$ for a nice set X_2. Take $X = \{u \bar{v} / u \in R_1, \bar{v} \in X_2\}$. We have $u \bar{v}$ is a nice sequence for all $u \in R_1$ and $\bar{v} \in X_2$. Then X is a nice set and we can easily check that $R = X \to \mathcal{N}$.
- $R = R_1 \land R_2$: Similar to the previous case.
- $R = R_1 \lor R_2$: Take $X = \{[x.u, y.v] / \text{for each } r \in R_1 \text{ and } s \in R_2, u[x := r] \in \mathcal{N} \text{ and } v[y := s] \in \mathcal{N}\}$. We have X is a nice set and, by definition, $R = X \to \mathcal{N}$.

\[\square\]

Remark 3.2 Let $R \in \mathcal{R}$ and X a nice set such that $R = X \to \mathcal{N}$. We can suppose that $\emptyset \in X$. Indeed, since $R \subseteq \mathcal{N}$, we have also $R = X \cup \{\emptyset\} \to \mathcal{N}$.

Definition 3.4 Let $R \in \mathcal{R}$, we define $R^\perp = \cup \{X / R = X \to \mathcal{N} \text{ and } X \text{ is a nice set}\}$.

Lemma 3.7 Let $R \in \mathcal{R}$, then:

1. R^\perp is a nice set.
2. $R = R^\perp \to \mathcal{N}$.

Proof. 1. By definition.

2. This comes also from the fact that: If, for every $i \in I$, $R = X_i \to \mathcal{N}$, then $R = \cup_{i \in I} X_i \to \mathcal{N}$.

\[\square\]

Remark 3.3 For $R \in \mathcal{R}$, R^\perp is simply the greatest nice X such that $R = X \to \mathcal{N}$. In fact any nice X such that $\emptyset \in X$ and $R = X \to \mathcal{N}$ would work as well as R^\perp.

Lemma 3.8 Let $R \in \mathcal{R}$, $t \in R$ and $t \triangleright^* t'$. Then $t' \in R$.

Proof. Let $\bar{u} \in R^\perp$. We have $(t \bar{u}) \triangleright^* (t' \bar{u})$ and $(t \bar{u}) \in \mathcal{N}$, then $(t' \bar{u}) \in \mathcal{N}$. We deduce that $t' \in R^\perp \to \mathcal{N} = R$.

\[\square\]

Remark 3.4 Let $R \in \mathcal{R}$, we have not in general $\mathcal{N} \subseteq R$, but we can prove, by induction, that $\mu a.\mathcal{N} = \{\mu a.t / t \in \mathcal{N} \text{ and } a \text{ is not free in } t\} \subseteq R$.
4. Proof of the theorem 2.3

Definition 4.1. An interpretation is a function \(I \) from the propositional variables to \(\mathcal{N} \), which we extend to any formula as follows: \(I(\bot) = \mathcal{N} \), \(I(A \rightarrow B) = I(A) \rightarrow I(B) \), \(I(A \land B) = I(A) \land I(B) \) and \(I(A \lor B) = I(A) \lor I(B) \).

Lemma 4.1 (Adequation lemma) Let \(\Gamma = [x_i : A_i]_{1 \leq i \leq n}, \Delta = [a_j : B_j]_{1 \leq j \leq m} \). An interpretation, \(u_i \in I(A_i), v_j \in I(B_j) \), and \(t \) such that \(\Gamma \vdash t : A \rightarrow \Delta \).

Then \(t[x_1 := u_1, \ldots, x_n := u_n, a_1 := v_1, \ldots, a_m := v_m] \in I(A) \).

Proof. For each term \(s \), we denote \(s[x_1 := u_1, \ldots, x_n := u_n, a_1 := v_1, \ldots, a_m := v_m] \) by \(s' \).

We look at the last used rule in the derivation of \(\Gamma \vdash t : A \rightarrow \Delta \).

- \(\text{ax} \), \(\rightarrow \varepsilon \): Easy.
- \(\rightarrow \varepsilon \): In this case \(t = \lambda x.t_1 \) with \(x : C \vdash t_1 : D \land A = C \rightarrow D \). Let \(u \in I(C) \) and \(\bar{w} \in I(D) \). By induction hypothesis, we have \(t_1' \) such that \((\lambda x.t_1 u) \bar{w} \in \mathcal{N} \), and, by the lemma 3.3, \((\lambda x.t_1 u) \bar{w} \in \mathcal{N} \). Therefore \((\lambda x.t_1 u) \in I(D) \), hence \(\lambda x.t_1' \in I(C) \rightarrow I(D) = I(A) \).
- \(\land \) and \(\lor \): Similar to \(\rightarrow \varepsilon \).
- \(\forall : \) In this case \(t = (t_1[x_u, y_v]) \) with \(\Gamma \vdash t_1 : B \lor C \land A = C \rightarrow D \). Let \(s \in I(C) \) and \(\bar{w} \in I(B) \). By induction hypothesis, we have \(t_1' \) such that \((t_1' x_u) \bar{w} \in \mathcal{N} \). By the lemma 3.4, \((t_1' x_u) \bar{w} \in \mathcal{N} \), therefore \(t_1' \in I(C) \rightarrow I(D) = I(A) \).
- \(\text{abs} e \): In this case \(t = \mu a.u \) and \(\Gamma \vdash \mu a.u : A \rightarrow \Delta \). Let \(\bar{w} \in I(A) \). It suffices to prove that \((\mu a.\bar{u}) \bar{w} \in \mathcal{N} \). By induction hypothesis, \(u[\alpha := \bar{w}] \in \mathcal{N} \), hence, by the lemma 3.3, \((\mu a.\bar{u}) \bar{w} \in \mathcal{N} \). Finally, \((\mu a.\bar{u})' \in I(A) \).
- \(\text{abs} i \): In this case \(t = (a_j u) \) and \(\Gamma \vdash (a_j u) : \Delta \land A ; a_j : B_j \). We have to prove that \(t' \in \mathcal{N} \), by induction hypothesis, \(u' \in I(B_j) \), then \((a_j u') \in \mathcal{N} \), therefore \(t' = (a_j u') \in \mathcal{N} \).

\[\square \]

Notation 4.1. We denote \(I_N \) the interpretation such that, for each propositional variable \(X \), \(I_N(X) = \mathcal{N} \).

Proof (of theorem 2.3). If \(x_1 : A_1, \ldots, x_n : A_n \vdash t : A ; a_1 : B_1, \ldots, a_m : B_m \), then, by the lemma 3.5, \(x_1 \in I_N(A_i) \), and, by definition, \(\emptyset \in I_N(B_j) \). Therefore by the lemma 4.1, \(t = t[x_1 := x_1, \ldots, x_n := x_n, a_1 := v_1, \ldots, a_m := v_m] \in I_N(A) \) and finally, by the lemma 3.5, \(t \in \mathcal{N} \).

\[\square \]

Remark 4.1. We can give now another proof of the remark 3.4: “if \(R \in \mathcal{R} \), the \(\mu a.\mathcal{N} \subseteq R \)”. Let \(t = \lambda z.\mu a.z \), we have \(t \vdash \bot \rightarrow p \) for every propositional variable \(p \). By the lemma 4.1, for every \(R \in \mathcal{R} \), \(t \in \mathcal{N} \rightarrow R \), then, for every \(u \in \mathcal{N} \), \((t u) \in R \), therefore, by the lemma 3.8, \(\mu a.\bar{u} \in R \).
References