AN INTRODUCTION TO MOTIVIC INTEGRATION THEORY
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These pages are the notes of a talk given at the Catholic University of Leuven on October 13’, 2010.
For wonderful surveys about this subject, look at [5], [7], [9] and [10].

1. HISTORY OF MOTIVIC INTEGRATION : WHY ?

The story starts with a theorem coming from strings theory :

Theoreme 1.1 (Batyrev, 95°, [1]). Let X and Y be two Calabi-Yau varieties (complex algebraic varieties,
smooth and proper which admit a non vanishing regular differential form of mazimal degree). If X and Y are
birationally equivalent then X and Y have the same Betti numbers :

Vi >0, rank H (X (C),C) = rank H'(Y(C),C).

Proof. 1t uses :
(1)

(2) p-adic integration and its change variables formula,

(3) Weil conjectures,

(4) Comparison theorem between l-adic Betti numbers and usual Betti numbers.

Hironaka’s theorem,
3
4

After that :

e Kontsevich (December 7, 95’) at Orsay, explained a direct approach, avoiding p-adic integration and
WEeil conjectures but involving arc spaces : motivic integration.

He showed more : X and X’ have the same Hodge numbers, h??(X) (where h??(X) is the dimension
of H1(X,Qk)).
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e Denef-Loeser (99’) [4] constructed a motivic integration theory on arbitrary (in particular singular)
algebraic varieties on a field k (car k=0).

o Loeser-Sebag (03) [8] constructed a motivic integration theory on formal schemes and rigid varieties
(for an arbitrary complete discrete valuation ring with perfect residue field).

e Cluckers-Loeser (08) [3] and differently Hrushowski-Kazhdan (06) [6] constructed a general framework
for motivic integration based on model theory.

2. ARCS SPACES : WHAT WE WILL MEASURE

Let k be a field, car k=0.
Let X be a variety = separated and reduced scheme of finite type over k.

2.1. Variety n — jets of X (Greenberg). For all n > 0, we denote by £, (X) the k-variety which represents
the functor

k—alg — Set
R — Homk—scheme(SpeC(R[t]/tn+1)7X)

Note that "the base extension operation” Y ~ Y xj k[t]/t" ! is a covariant functor and it has a right adjoint
X = L,(X).

o L,(X) is called n-jets of X.

e For all field K containing k : £,(X)(K) = X (K[t]/t" ).

Example 2.1. Let X be an affine variety :

L, (X) is given by the equations in variables dy, .., a;, expressing that fi(dag+...+ant™) = 0modt™ 1, i =1, ...
Example 2.2. X =C%, £,(X) = {(aél) + aPe, ...,a(()d) + ...a%d)t”) | al(»j) € C} ~ Cdn+1),

Example 2.3. Cusp :

. X:{yQ—x3:O}

o Lo(X)(C) = {(ao,bo) € C* | b5 = a3} = X(C)

o £1(X)(C) = {(ag + bit,bo + bit) € (C[t]/t?)? | (bo + b1t)? = (ag + a1t)® mod t?}
2 3

bg = ag

which implies two equations { 2bobt = 3a2a;

Note that £;(X)(C) ~ TX(C).
Remark 2.4. Let X be an algebraic variety, we always have these isomorphisms
ﬁo(X)ZX and ﬁl(X)ZTX

2.2. Truncation maps. For all n > m, there is a natural map induced by reducing modulo t™*! and called
truncation map



AN INTRODUCTION TO MOTIVIC INTEGRATION THEORY 3

2.3. Arc space of X. We obtained in this way a projective system and we call arc space of X the projective
limit

L(X) := limLy(X).

It’s a reduced separated scheme over k, but not (in general) of finite type over k.
Note that : it’s a scheme and not a pro-scheme because the truncation maps are affine.

For all field K containing k
LX)(K) = X (K[[t]]).

Example 2.5. X = C%, £(X) = {(X at")ici1. .y | o) € C} ~ C[[t])".

Example 2.6. Cusp :
.« X — {2 —0)
e L(X) is given in the infinite dimensional affine space with coordinates (a;), (b;), by an infinite number
b = aj
of equations { 2bob; = 3a3a;

3. ADDITIVE INVARIANTS : WHAT INTERESTS US

Let k a field, cark = 0.

Definition 3.1. An additive invariant is a map A : Vary — R where R is a ring, such that

AX) = A(Y) when X ~ Y

AX)=AMF)+ AMX\F) for Fa closed subset of X

AX xY)=AX) x A®Y)
Example 3.2. Euler Characteristic, k = C

Eu(X):=» (~1)'rankH}(X(C),C).
i

Jan Denef said me, that by a Grothendieck’s theorem the result is the same by using not compact support
cohomology.

Example 3.3. Hodge polynomial , k = C
H: Vare — Zu,v
X = g (— D), quPu
where h;’q is the dimension of H:(X(C),C)P4, the (p,q)-part of the mixed Hodge structure of Deligne on
H{(X(C),C).

4. GROTHENDIECK RINGS : VALUES OF THE MEASURE

There exists an universal additive invariant
[—]: Vary — Ko(Varg)

such that for all additive invariant A : Vary — R, there exists a unique ring morphism A Kyo(Varg) = R such
that the following diagram

Vary i> Ko(Varg)

i/

is commutative.

Construction of Ko(Vary) : It’s a ring with the presentation :

e generators : isomorphism classes [S], S € Vary
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e relations :
- [S] =[5+ [S\ 9] for all S closed subset of S
- [ x 8 =1[5].[9.
Remark 4.1. If [X] = [X'] then A(X) = A(X'), for all additive invariant A. For instance, same Euler

characteristic and same Hodge-Deligne polynomial. In particular, same Hodge numbers and thus same Betti
numbers.

We denote by L the class of the affine line [A']. In the following, we will use M;, := Ko(Vary)[L™!] the
localisation of Ky(Vary) with respect to L.

Remark 4.2. Some remarks :

e Poonen proved that Ko(Vary) is not a domain, for k a field with car k = 0.
e In the same way, My is not a domain.
e It’s not known if the localisation morphism Ky(Vary) — My, is injective.
e There is an alternative description of Ko(Varg) given by Bittner [2] :
- generators : isomorphism classes [V] of non-singular projective varieties
- relations :
(1) 0] =0 ~
(2) [V]—[E] =[V]—-[Z], for (V,E) a blow-up of (V,Z).
But : it uses the weak factorisation theorem !

5. MOTIVIC MEASURE

Let k be a field, car k = 0.
Let X be an algebraic variety over k of pure dimension d. Let X;,, denote the singular locus of X.

5.1. Constructible or cylinder subset of £(X).

Definition 5.1. A subset A C L£(X) is constructible or a cylinder if and only if A = 7,1(C) with C a
constructible subset of £,,(X), for some n € N.

5.2. Stable subset of £(X).

Definition 5.2. A subset A C £(X) is stable if and only if A is constructible and A N L(X) = 0.

Proposition 5.3. If A C L(X) is stable then [m,(A)]L™"% in My, stabilizes for n big enough. We denote
p(A) = [, (AL, n>> 1

and call it motivic measure of the stable subset A.

Proof. In the non-singular case : X smooth.

(1) By Hensel lemma :
— for all n > m, 7, is a locally trivial fibration for the Zariski topology with fiber A(m=7)d,
— for all n, 7, is surjective.
(2) If E — B is a locally trivial fibration for the Zariski topology with fiber F' then [E] = [F][B].
(D+(2) If
A=n1C) c L(X)

n

+ Lo
mn(A) L,(X)
+ { m,
constructible = Em (X)
then [, (4)] = LO—4[C].
So for all n > m,
[ma(A)] _ (O]
Lnd Lmd
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5.3. Non stable constructible subset of £(X) : completion of M;, ! Let A C £(X) be a constructible

and not stable subset. The quotient % will not always stabilize.

— — . [rn (LX) 1
Example 5.5. X = {zy = 0} show that "7 = 2L — .

But the limit

w(A) := lim [ (4)]

n—oo Lnd

exists in the completed Grothendieck group My, and it’s called motivic measure of the constructible set A.

M, is the completion of M), with respect to the filtration (F™ M) mez where
F" My =< [S]L™",i —dim S > m > .
It’s a ring filtration F™ M, C F™ M, F™F™ C F™*" and
My, = lim My /F™ M.
This yields a g-additive measure y on the Boolean algebra of constructible subsets then
p(UA) = u(As) € My.

There are more generally measurable subsets of £(X). In particular :

e the semi-algebraic subsets of £(X) are measurable,
e If S is a subset of X and S # X then £(S) is measurable and u(L£(S)) = 0.

Remark 5.6. Some remarks :
(1) The completed Grothendieck ring was introduced first by Kontsevich.

(2) It’s not known whether the canonical morphism Mj — ./\;l;.C is injective or not !
(3) Nevertheless, one can show that Euler Characteristic and Hodge polynomial factor through the image

M Of ./\/lk in Mk.

5.4. Integrable function. Let A C £(X) a measurable set and o : A — Z U {0} be a function such that all
its fibers are measurable, L™ is integrable if the series

/A L=dp =3 p(Ana~ ()L™

neZ
is convergent in M;,.
Example 5.7. If 7 is a sheaf of ideals on X then we define
ordiZ : L(X) — NU{+oo}
© = minger, ordig(p) *
5.5. Change variable formula. This theorem is due to Kontsevich in the smooth case and Denef-Loeser for
the general case.

Theoreme 5.8. Let

(1) X be an algebraic variety over k, with dim X = d,

(2) Y be a smooth algebraic variety over k, with dimY = d,

(3) h:Y — X be a proper and birationnal map,

(4) A C L(X) be a constructible (also true for A semi-algebraic),
(5) a: A — ZU{oo} be such that L~ is integrable on A,

Then

/ L_adux _ / L—aoh—()T'dtJac;L duy'
A h=1(A)
With

e if X is non-singular, Jac.h is the ideal sheaf locally generated by the ordinary Jacobian determinant
with respect to local coordinates on X and Y.
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e if X is general, then the sheaf of regular differential d-forms h*(Q%) is still a submodule of Q¢ but not
necessary generated by one element. Taking locally a generator wy of Q¢ each h*(w) for w € Q% can
be written as h*(w) = g,wy. We define Jacy, as the ideal sheaf generated by these g,,.

5.6. Comparison with p-adic integration. We have the following comparison :
(1) The tabular :

p-adic motivic

integrate over | Z;', Z, = {iﬁlZ/me k[[t]]™, k[[t]] = Um k[t]/(t™)

P
value rings Z Ko(Vary)
Z[1/p] My
R M

(2) Let M be a d-dimensional submanifold of Z}" defined algebraically.
Denote m,, : Zi — (Zy /p" T Zy)™ = (Z/p" T Z)™.

Then %;(M) € Z[3] is constant for n big enough and is called the volume f1,(M) of M.

(3) For a singular d-dimensional subvariety Z of Z;' one defines its volume as
pp(Z) == ;i_%ﬂp(z \ Te(Zsing))
where T, (Zsing) is a tubular neighborhood.

Card mn(Z)
pnd .

Osterlé proved : p,(Z) = limy, 00

6. PROOF’S OF KONTSEVICH THEOREM
Theoreme 6.1. Let X and Y be two Calabi- Yau manifolds. If X and Y are birationnaly equivalent then
(X] =[Y] € My C M.
So X and Y have the same Hodge numbers, hence same Betti numbers (=Batyrev’s theorem).

Proof. Steps of the proof
(1) By Hironaka’s theorem, there exists a non singular proper complex algebraic variety Z and birationnal

morphisms hx : Z — X and hy : Z = Y.
(2) There exists ¢ € C* (¢ # 0 because wyx has no zeroes) such that

chywx = hywy.
(3) Soon L(Z)
ordi¢Jacy,, = ordi¢Jacy,, .
(4) Then now :
X] = U (£(X)) = [, dpix

(smoothness)

= Jez)
(change variables formula)

—_ f[,(Z) ]L—ordtJac;Ly dMZ
(CY-hypothesis)

]L—ordb Jach d/f’/Z

Jeovy Ldny = py (L£(Y))
(change variables formula)
= [Y].
(smoothness)
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