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These pages are the notes of a talk given at the Catholic University of Leuven on October 13’, 2010.

For wonderful surveys about this subject, look at [5], [7], [9] and [10].

1. History of motivic integration : Why ?

The story starts with a theorem coming from strings theory :

Theoreme 1.1 (Batyrev, 95’, [1]). Let X and Y be two Calabi-Yau varieties (complex algebraic varieties,
smooth and proper which admit a non vanishing regular differential form of maximal degree). If X and Y are
birationally equivalent then X and Y have the same Betti numbers :

∀i ≥ 0, rankHi(X(C),C) = rankHi(Y (C),C).

Proof. It uses :

(1) Hironaka’s theorem,
(2) p-adic integration and its change variables formula,
(3) Weil conjectures,
(4) Comparison theorem between l-adic Betti numbers and usual Betti numbers.

�

After that :

• Kontsevich (December 7, 95’) at Orsay, explained a direct approach, avoiding p-adic integration and
Weil conjectures but involving arc spaces : motivic integration.

He showed more : X and X ′ have the same Hodge numbers, hp,q(X) (where hp,q(X) is the dimension
of Hq(X,ΩpX)).
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2 AN INTRODUCTION TO MOTIVIC INTEGRATION THEORY

• Denef-Loeser (99’) [4] constructed a motivic integration theory on arbitrary (in particular singular)
algebraic varieties on a field k (car k=0).

• Loeser-Sebag (03) [8] constructed a motivic integration theory on formal schemes and rigid varieties
(for an arbitrary complete discrete valuation ring with perfect residue field).

• Cluckers-Loeser (08) [3] and differently Hrushowski-Kazhdan (06) [6] constructed a general framework
for motivic integration based on model theory.

2. Arcs spaces : What we will measure

Let k be a field, car k=0.
Let X be a variety = separated and reduced scheme of finite type over k.

2.1. Variety n− jets of X (Greenberg). For all n ≥ 0, we denote by Ln(X) the k-variety which represents
the functor

k − alg → Set
R 7→ Homk−scheme(Spec(R[t]/tn+1), X)

Note that ”the base extension operation” Y 7→ Y ×k k[t]/tn+1 is a covariant functor and it has a right adjoint
X 7→ Ln(X).

• Ln(X) is called n-jets of X.
• For all field K containing k : Ln(X)(K) = X(K[t]/tn+1).

Example 2.1. Let X be an affine variety :

X =


f1(x) = 0

.

.
fm(x) = 0

, x = (x1, .., xl).

Ln(X) is given by the equations in variables ~a0, .., ~an expressing that fi( ~a0+...+ ~ant
n) = 0modtn+1, i = 1, ...,m.

Example 2.2. X = Cd, Ln(X) = {(a(1)0 + ...a
(1)
n tn, ..., a

(d)
0 + ...a

(d)
n tn) | a(j)i ∈ C} ' Cd(n+1).

Example 2.3. Cusp :

• X = {y2 − x3 = 0}
• L0(X)(C) = {(a0, b0) ∈ C2 | b20 = a30} = X(C)
• L1(X)(C) = {(a0 + b1t, b0 + b1t) ∈ (C[t]/t2)2 | (b0 + b1t)

2 = (a0 + a1t)
3 mod t2}

which implies two equations

{
b20 = a30
2b0b1 = 3a20a1

.

Note that L1(X)(C) ' TX(C).

Remark 2.4. Let X be an algebraic variety, we always have these isomorphisms

L0(X) ' X and L1(X) ' TX

2.2. Truncation maps. For all n ≥ m, there is a natural map induced by reducing modulo tm+1 and called
truncation map

Ln(X)
πnm ↓

Lm(X)
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2.3. Arc space of X. We obtained in this way a projective system and we call arc space of X the projective
limit

L(X) := lim
←−
Ln(X).

It’s a reduced separated scheme over k, but not (in general) of finite type over k.

Note that : it’s a scheme and not a pro-scheme because the truncation maps are affine.

For all field K containing k
L(X)(K) = X(K[[t]]).

Example 2.5. X = Cd, L(X) = {(
∑
a
(i)
n tn)i∈{1,..d} | a

(j)
i ∈ C} ' C[[t]]d.

Example 2.6. Cusp :

• X = {y2 − x3 = 0}
• L(X) is given in the infinite dimensional affine space with coordinates (ai), (bi), by an infinite number

of equations

 b20 = a30
2b0b1 = 3a20a1
...

3. Additive invariants : what interests us

Let k a field, cark = 0.

Definition 3.1. An additive invariant is a map λ : V ark → R where R is a ring, such that λ(X) = λ(Y ) whenX ' Y
λ(X) = λ(F ) + λ(X \ F ) for F a closed subset of X
λ(X × Y ) = λ(X)× λ(Y )

Example 3.2. Euler Characteristic, k = C

Eu(X) :=
∑
i

(−1)irankHi
c(X(C),C).

Jan Denef said me, that by a Grothendieck’s theorem the result is the same by using not compact support
cohomology.

Example 3.3. Hodge polynomial , k = C

H : V arC → Z[u, v]
X 7→

∑
i,p,q(−1)ihip,qu

pvq

where hip,q is the dimension of Hi
c(X(C),C)p,q, the (p, q)-part of the mixed Hodge structure of Deligne on

Hi
c(X(C),C).

4. Grothendieck rings : Values of the measure

There exists an universal additive invariant

[−] : V ark → K0(V ark)

such that for all additive invariant λ : V ark → R, there exists a unique ring morphism λ̃ : K0(V ark)→ R such
that the following diagram

V ark
[] //

λ

��

K0(V ark)

λ̃
yyrrrrrrrrrrr

R

is commutative.

Construction of K0(V ark) : It’s a ring with the presentation :

• generators : isomorphism classes [S], S ∈ V ark
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• relations :
- [S] = [S′] + [S \ S′] for all S′ closed subset of S
- [S × S′] = [S].[S′].

Remark 4.1. If [X] = [X ′] then λ(X) = λ(X ′), for all additive invariant λ. For instance, same Euler
characteristic and same Hodge-Deligne polynomial. In particular, same Hodge numbers and thus same Betti
numbers.

We denote by L the class of the affine line [A1]. In the following, we will use Mk := K0(V ark)[L−1] the
localisation of K0(V ark) with respect to L.

Remark 4.2. Some remarks :

• Poonen proved that K0(V ark) is not a domain, for k a field with car k = 0.
• In the same way, Mk is not a domain.
• It’s not known if the localisation morphism K0(V ark)→Mk is injective.
• There is an alternative description of K0(V ark) given by Bittner [2] :
- generators : isomorphism classes [V ] of non-singular projective varieties
- relations :

(1) [∅] = 0

(2) [Ṽ ]− [E] = [V ]− [Z], for (Ṽ , E) a blow-up of (V,Z).
But : it uses the weak factorisation theorem !

5. Motivic measure

Let k be a field, car k = 0.
Let X be an algebraic variety over k of pure dimension d. Let Xsing denote the singular locus of X.

5.1. Constructible or cylinder subset of L(X).

Definition 5.1. A subset A ⊂ L(X) is constructible or a cylinder if and only if A = π−1n (C) with C a
constructible subset of Ln(X), for some n ∈ N.

5.2. Stable subset of L(X).

Definition 5.2. A subset A ⊂ L(X) is stable if and only if A is constructible and A ∩ L(X) = ∅.
Proposition 5.3. If A ⊂ L(X) is stable then [πn(A)]L−nd in Mk stabilizes for n big enough. We denote

µ(A) := [πn(A)]L−nd, n >> 1

and call it motivic measure of the stable subset A.

Proof. In the non-singular case : X smooth.

(1) By Hensel lemma :
– for all n ≥ m, πnm is a locally trivial fibration for the Zariski topology with fiber A(m−n)d.
– for all n, πn is surjective.

(2) If E → B is a locally trivial fibration for the Zariski topology with fiber F then [E] = [F ][B].
(1)+(2) If

A = π−1n (C) ⊂ L(X)
↓ ↓ πn

πn(A) Ln(X)
↓ ↓ πnm
C

constructible
⊂ Lm(X)

then [πn(A)] = L(n−m)d[C].

So for all n ≥ m,
[πn(A)]

Lnd
=

[C]

Lmd
.

�

Remark 5.4. If X is smooth then µ(L(X)) = [π0(L(X))] = [X].
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5.3. Non stable constructible subset of L(X) : completion of Mk ! Let A ⊂ L(X) be a constructible

and not stable subset. The quotient [πn(A)]
Lnd will not always stabilize.

Example 5.5. X = {xy = 0} show that [πn(L(X))]
Lnd = 2L− 1

Ln .

But the limit

µ(A) := lim
n→∞

[πn(A)]

Lnd
exists in the completed Grothendieck group M̂k and it’s called motivic measure of the constructible set A.

M̂k is the completion of Mk with respect to the filtration (FmMk)m∈Z where

FmMk :=< [S]L−i, i− dimS ≥ m > .

It’s a ring filtration Fm+1Mk ⊂ FmMk, FmFn ⊂ Fm+n and

M̂k := lim
←
Mk/F

mMk.

This yields a σ-additive measure µ on the Boolean algebra of constructible subsets then

µ(tAi) =
∑

µ(Ai) ∈ M̂k.

There are more generally measurable subsets of L(X). In particular :

• the semi-algebraic subsets of L(X) are measurable,
• If S is a subset of X and S 6= X then L(S) is measurable and µ(L(S)) = 0.

Remark 5.6. Some remarks :

(1) The completed Grothendieck ring was introduced first by Kontsevich.

(2) It’s not known whether the canonical morphism Mk → M̂k is injective or not !
(3) Nevertheless, one can show that Euler Characteristic and Hodge polynomial factor through the image

Mk of Mk in M̂k.

5.4. Integrable function. Let A ⊂ L(X) a measurable set and α : A→ Z ∪ {∞} be a function such that all
its fibers are measurable, L−α is integrable if the series∫

A

L−αdµ :=
∑
n∈Z

µ(A ∩ α−1(n))L−n

is convergent in M̂k.

Example 5.7. If I is a sheaf of ideals on X then we define

ordtI : L(X) → N ∪ {+∞}
ϕ 7→ ming∈Iπ0(ϕ)

ordtg(ϕ)
.

5.5. Change variable formula. This theorem is due to Kontsevich in the smooth case and Denef-Loeser for
the general case.

Theoreme 5.8. Let

(1) X be an algebraic variety over k, with dimX = d,
(2) Y be a smooth algebraic variety over k, with dimY = d,
(3) h : Y → X be a proper and birationnal map,
(4) A ⊂ L(X) be a constructible (also true for A semi-algebraic),
(5) α : A→ Z ∪ {∞} be such that L−α is integrable on A,

Then ∫
A

L−αdµX =

∫
h−1(A)

L−α◦h−ordtJachdµY .

With

• if X is non-singular, Jacch is the ideal sheaf locally generated by the ordinary Jacobian determinant
with respect to local coordinates on X and Y .
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• if X is general, then the sheaf of regular differential d-forms h∗(ΩdX) is still a submodule of ΩdY but not
necessary generated by one element. Taking locally a generator ωY of ΩdY , each h∗(ω) for ω ∈ ΩdX can
be written as h∗(ω) = gωωY . We define Jach as the ideal sheaf generated by these gω.

5.6. Comparison with p-adic integration. We have the following comparison :

(1) The tabular :

p-adic motivic

integrate over Zmp , Zp = lim
←−

Z/pmZ k[[t]]m, k[[t]] = lim
←−

k[t]/(tm)

value rings Z K0(V ark)
Z[1/p] Mk

R M̂
(2) Let M be a d-dimensional submanifold of Zmp defined algebraically.

Denote πn : Zmp → (Zp/pn+1Zp)m = (Z/pn+1Z)m.

Then Card πn(M)
pnd

∈ Z[ 1p ] is constant for n big enough and is called the volume µp(M) of M .

(3) For a singular d-dimensional subvariety Z of Zmp one defines its volume as

µp(Z) := lim
ε→0

µp(Z \ Tε(Zsing))

where Tε(Zsing) is a tubular neighborhood.

Osterlé proved : µp(Z) = limn→∞
Card πn(Z)

pnd
.

6. Proof’s of Kontsevich theorem

Theoreme 6.1. Let X and Y be two Calabi-Yau manifolds. If X and Y are birationnaly equivalent then

[X] = [Y ] ∈Mk ⊂ M̂k.

So X and Y have the same Hodge numbers, hence same Betti numbers (=Batyrev’s theorem).

Proof. Steps of the proof

(1) By Hironaka’s theorem, there exists a non singular proper complex algebraic variety Z and birationnal
morphisms hX : Z → X and hY : Z → Y .

(2) There exists c ∈ C∗ (c 6= 0 because ωX has no zeroes) such that

ch∗XωX = h∗Y ωY .

(3) So on L(Z)

ordtJachX = ordtJachY .

(4) Then now :

[X] = µX(L(X)) =
∫
L(X)

1dµX
(smoothness)

=
∫
L(Z)

L−ordtJachX dµZ
(change variables formula)

=
∫
L(Z)

L−ordtJachY dµZ
(CY-hypothesis)

=
∫
L(Y )

1dµY = µY (L(Y ))

(change variables formula)
= [Y ].

(smoothness)

�
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