Equivalence between n-surfaces and regular n-G-maps

S. Alayrangues - X. Daragon - J.-O. Lachaud - P. Lienhardt

LaBRI (Bordeaux)
SIC (Poitiers)
A2SI (Marne-La-Vallée)
Outline

- Background and motivations
- Models description
- Main ideas underlying the proof
- Future work
Background

- **Topological representation of space subdivisions**
 - Geometric modeling, Computational geometry, Image analysis
 - Dedicated structures: incidence graphs, combinatorial maps, generalized maps, cell-tuples, simplicial complexes, simplicial sets, orders...
 - Specific tools and algorithms: construction operators, topological operators...
Motivations

- Transfer tools and notions from one model to another
Motivations

- Transfer tools and notions from one model to another
 - n-surface (Image analysis): marching-cube like algorithms, homotopic thinning...
 - n-G-map (Topological modeling): efficient data structures, construction operators...
Motivations

- Transfer tools and notions from one model to another
- Design a general framework to represent the topology of subdivisions
Motivations

- Transfer tools and notions from one model to another
- Design a general framework to represent the topology of subdivisions
- Use several models in a single processing sequence
Motivations

- Transfer tools and notions from one model to another
- Design a general framework to represent the topology of subdivisions
- Use several models in a single processing sequence
 - Obtain an n-surface from an image
 - Transform it into an n-G-map
 - Handle it with n-G-maps operators
Motivations

- Transfer tools and notions from one model to another
- Design a general framework to represent the topology of subdivisions
- Use several models in a single processing sequence

⇒ Compare these structures
⇒ Highlight their similarities and specificities
Previous work

- quad-edge, facet-edge, cell-tuples, n-dimensional map (generalized or not) (Brisson 89, Lienhardt 91)
- dual graphs, combinatorial maps (Brun and Kropatsch 01)
- subclass of orders, cell complexes (Alayrangues and Lachaud 02)
\(n \)-surfaces and \(n-G \)-maps

- \(n \)-surfaces (subclass of orders)
 - Image analysis
 - Subclass of pseudo-manifolds without boundary
 - Recursive definition

- Generalized maps
 - Geometric and topological modeling
 - Quasi-manifolds with or without boundary, oriented or not
n-surfaces and n-G-maps

- n-surfaces (subclass of orders)
 - subclass of pseudo-manifolds without boundary
- Generalized maps
 - Quasi-manifolds \subset pseudo-manifolds
Orders and n-G-maps

Order $|X| = (X, \alpha)$

X set of elements equipped with the order relation α
Orders and n-G-maps

- Order $|X| = (X, \alpha)$
 - X set of elements equipped with the order relation α
 - X Countable
Orders and \(n-G \)-maps

- \(\text{CF- Order } |X| = (X, \alpha) \)
- \(X \) set of elements equipped with the order relation \(\alpha \)
- \(X \) Countable and \textit{locally Finite}
Orders and n-G-maps

- CF- Order $|X| = (X, \alpha)$
- Notation: $\theta = \alpha \alpha^{-1}$

\Rightarrow may be represented by a DAG
Orders and n-G-maps

CF- Order $\mid X \mid = (X, \alpha)$

- Notation: $\theta = \alpha \alpha^{-1}$
- \Rightarrow may be represented by a DAG

n-G-map $G = (D, \alpha_0, \cdots, \alpha_n)$
- D set of darts,
- α_i, $i \in \{0, \cdots, n\}$, involutions
- $\alpha_i \alpha_j$ involution, $i \leq j - 2$
First comparison difficulty
First difficulty
First difficulty
First difficulty

\[F_1 \]

\[F_2 \]

\[F_3 \]
First difficulty
First difficulty
First difficulty
Second difficulty

- \(n \)-surface: subclass of connected orders
 - \(n \)-surface, \(n > 0 \), \(\theta(x) \setminus \{x\} \) \((n - 1)\)-surface
- Recursive definition

- \(n-G \)-maps
 - Constructive definition

⇒ How to characterize a subclass of \(n-G \)-maps equivalent to \(n \)-surfaces?
Methodology

n-surfaces \iff subclass of n-G-maps
Methodology

n-surfaces

\subseteq

subclass of

\subseteq

n-G-maps

subclass of

incidence graphs
Augmented Incidence Graphs (AIG)

- Incidence graphs of subdivided d-manifolds (Brisson 89)
 - subdivided d-manifolds \subset quasi-manifold
 - each cell belongs to at least one maximal chain
 - local property called `switch` property:
Augmented Incidence Graphs (AIG)

- Incidence graphs of subdivided d-manifolds (Brisson 89)
- subdivided d-manifolds \subset quasi-manifold
- each cell belongs to at least one maximal chain
- local property called \textit{switch} property:

\[
\begin{align*}
C^i & \rightarrow C^{i+1} \\
C^i & \leftarrow C^{i-1} \\
C'^i & \rightarrow X \\
C'^i & \leftarrow X \\
C''^i & \rightarrow C''^i
\end{align*}
\]
Augmented Incidence Graphs (AIG)

- Incidence graphs of subdivided d-manifolds (Brisson 89)
 - subdivided d-manifolds \subset quasi-manifold
 - each cell belongs to at least one maximal chain
 - local property called switch property: \Rightarrow allows to define involutions between maximal chains of the graph
Augmented Incidence Graphs (AIG)

- Incidence graphs of subdivided d-manifolds (Brisson 89)
 - subdivided d-manifolds \subset quasi-manifold
 - each cell belongs to at least one maximal chain

- local property called switch property :
 \Rightarrow allows to define involutions between maximal chains of the graph

\Rightarrow But no complete characterization of such graphs
AIG and n-surfaces

- Recursive characterization of AIG
 - an incidence graph which is everywhere an AIG also is an AIG
 - an AIG is locally everywhere an AIG
- an AIG of dimension 0 is isomorphic to a 0-surface

\Rightarrow Equivalence between AIG and n-surface

- Note: proof not fully completed in the paper
n-surface

Consequence: switch property on n-surfaces
\(n \text{-surface} \)

Consequence: switch property on \(n \)-surfaces
n-surface

Consequence: switch property on n-surfaces
Consequence: switch property on \(n \)-surfaces
AIG and n-G-maps
AIG and n-G-maps
AIG and \(n-G \)-maps
Conclusion and Future work

Achievement:

- Characterization of a subclass of n-G-maps equivalent to n-surfaces

Future work:

- Effectively use this equivalence
- Study n-G-maps with boundary, oriented or not
 - Define such notions on orders
 - Focus on a wider range of objects
 - Chains of maps (Elter, Lienhardt)