Fair testing vs. must testing in a fair setting

Tom Hirschowitz and Damien Pous

Amsterdam, Novembre 2010

UMR 5127

Goal

Reconcile, in the particular case of Milner's CCS,

• Joyal, Nielsen, and Winskel's 1993 (JNW) approach to concurrency theory,

with

- the interactive approach to behavioural equivalences:
 - testing semantics in process algebra (Hennessy and De Nicola, Beffara),
 - Krivine realisability,
 - game semantics (Hyland and Ong, Abramsky et al.), Girard's ludics.

Review of JNW

- Category \mathbb{P} of (non-empty) paths, i.e.:
 - ▶ objects: non-empty words over an alphabet *A*;
 - morphisms: prefix extensions, e.g., $abc \rightarrow abcd$.
- Presheaves $\widehat{\mathbb{P}}$, i.e., functors $\mathbb{P}^{op} \to \mathsf{Set}$.
- Presheaves are like trees. Examples ab + ac and a(b + c).
- Natural transformations are like functional simulations. Example.

Positions

Let ${\mathbb C}$ be:

Definition

Positions are presheaves on \mathbb{C} .

Positions form a category \mathbb{B} .

Example

- $F(\star) = \{a, b\},$
- $F(1) = \{X_1, X_3\},\$
- $F(2) = \{X_2\},\$
- $F(\star \xrightarrow{0} 1)(X_1) = a$, Notation: $X_1 \cdot 0 = a$.

•
$$X_2 \cdot 0 = a, X_2 \cdot 1 = b,$$

•
$$X_3 \cdot 0 = b$$
.

$$X_1 \qquad X_2 \qquad X_3$$

$$0 \qquad 0 \qquad 1 \qquad 0$$

$$a \qquad b$$
The category of elements $\int F$.

Moves from natural deduction, example: input

$$\frac{a_1,\ldots,a_n\vdash P}{a_1,\ldots,a_n\vdash a_i.P}$$

Add an object $\iota_{n,i}^-$ to \mathbb{C} :

and quotient by $s \circ j = t \circ j$ for all $j \in n$.

Motivating the definition

The category of elements of the representable $\iota_{3,2}^-$ is the partially ordered set generated by

Output: do the same with $\iota_{n,i}^+$.

Forking

The category of elements of the representable π_3 is the partially ordered set generated by

Name creation

The category of elements of the representable ν_2 is the partially ordered set generated by

Tick

Synchronisation: the 4th dimension

Examples

- The two maximal executions of $\overline{a} \mid b$, which are actually equal.
- If a = b, one more execution.
- An execution of $\overline{a} \mid \mu X.(X \mid X)$.
- Some "wrong" examples.

Restrictions and moves

- A restriction from X to Y is a cospan $Y \hookrightarrow X \stackrel{id}{\longleftrightarrow} X$.
- A move from X to Y is a cospan $Y \hookrightarrow M \hookrightarrow X$ of presheaves obtained
 - from a cospan $Y_0 \stackrel{t's}{\hookrightarrow} M_0 \stackrel{s}{\hookrightarrow} X_0$,
 - with M_0 a representable of dim 2 or 3,
 - by identifying some names.

Observations

Definition

An observation is a presheaf $U \in \widehat{\mathbb{C}}$ isomorphic to a possibly denumerable "composition" of moves and restrictions in $Cospan(\widehat{\mathbb{C}})$:

The category ${\mathbb E}$ of observations

- Objects: $X \hookrightarrow U$ in $\widehat{\mathbb{C}}$ with
 - U an observation,
 - X its base;
- Morphisms: all commuting squares

• Obvious functor to positions $\pi \colon \mathbb{E} \to \mathbb{B}$:

$$(X \hookrightarrow U) \mapsto X.$$

A Grothendieck topology

Let \star have dimension 0, *n* have dimension 1, and so on up to 3.

Definition

Let a sieve S on $X \hookrightarrow U$ in \mathbb{E} be view-covering when it is jointly surjective in dimension 1.

Elementary views

An elementary view from X to Y is a composite of

- a move from a representable,
- followed by a restriction to a representable:

$$n' \hookrightarrow X \stackrel{id}{\longleftrightarrow} X \hookrightarrow M \longleftrightarrow n.$$

Keeps track of one trajectory.

Views

Definition

A view is an observation $X \hookrightarrow U$ isomorphic to a possibly denumerable "composition" of elementary views.

Views are a canonical covering

Proposition

For any observation $X \hookrightarrow U$, the sieve generated by morphisms from finite views into U is covering.

Proposition

Any covering sieve contains all morphisms from finite views.

The categories \mathbb{E}_X

Here we want to relativise to a base position X.

Definition

Let \mathbb{E}_X have as objects $U \leftrightarrow Y \to X$, and morphisms transformations between such with X fixed.

 \mathbb{E}_X inherits a Grothendieck topology from \mathbb{E} .

Strategies as sheaves

Definition

Let the category S_X of strategies on X be $Sh(\mathbb{E}_X)$.

The stack of strategies

Proposition

This $X \mapsto S_X$ extends to a functor $S \colon \mathbb{B}^{op} \to CAT$, which is a stack for the restriction of the view-covering topology to \mathbb{B} .

Why stacks?

- Strategies are only sensible up to iso.
- Intuitively, only the number of possible states should matter, not the precise set of states.

Canonical spatial decomposition

Let
$$\operatorname{Sq}(X) = \prod_{n} X(n)$$
.

Proposition

$$\mathsf{S}_X \simeq \prod_{(n,x)\in \mathrm{Sq}(X)} \mathsf{S}_n.$$

Temporal decomposition

- Let \mathcal{M}_X be the set of moves from X (explain the size).
- For each $i \in \mathcal{M}_X$, let X_i be the domain of i.

Theorem

$$\mathsf{S}_n\simeq\mathsf{Fam}\left(\prod_{i\in\mathcal{M}_n}\mathsf{S}_{X_i}
ight).$$

A strategy is determined by

- its initial states, and
- what remains of them after each possible move.

Almost a sketch: would be $S_n \cong \prod_{i \in \mathcal{M}_n} S_{X_i}$.

Scenarioses

In concurrency,

- Physical, or fair scenario: players are really independent;
- Interpreted, or potentially unfair scenario: a scheduler is responsible for parallelism.

Must testing

Supposing a fixed move \heartsuit :

Definition

A process *P* is must orthogonal to a context *C*, when all maximal traces of *C*[*P*] play \heartsuit at some point. Notation: $P \perp^m C$, P^{\perp^m} .

Definition

P and Q are must equivalent, notation $P \sim_m Q$, when $P^{\perp^m} = Q^{\perp^m}$.

Must testing in an unfair setting

Usually, only the unfair scenario is formalised:

$$P = (\Omega \mid \overline{a})$$
 and $Q = \Omega$

are must equivalent.

The obvious test $C = a . \heartsuit | \Box$ is not orthogonal to P.

Indeed, there is an infinite looping trace, maximal.

Fair testing in an unfair setting

• The example

$$(\Omega \mid \overline{a}) \sim_m \Omega$$

takes potential unfairness of the scheduler into account.

• Usually people do not want to, and resort to:

Definition

A process *P* is fair orthogonal to a context *C*, when all finite traces of C[P] extend to traces that play \heartsuit at some point. Notation: $P \perp^{f} C$, $P^{\perp^{f}}$.

Definition

P and *Q* are fair equivalent, notation $P \sim_f Q$, when $P^{\perp^f} = Q^{\perp^f}$.

Solves the issue.

Closed-world observations

Definition

An observation $X \hookrightarrow U$ is closed-world when both

$$\prod_{n,i} U(\iota_{n,i}^+) \xleftarrow{\epsilon} \prod_{n,i,m,j} U(\tau_{n,i,m,j}) \xrightarrow{\rho} \prod_{n,i} U(\iota_{n,i}^-)$$
(1)

are surjective.

Global behaviours

- Let $\mathbb{W} \hookrightarrow \mathbb{E}$ be the full subcategory of closed-world observations.
- Let $\mathbb{W}(X)$ be the fibre over X for the projection functor $\mathbb{W} \to \mathbb{B}$.

Definition

Let the category of global behaviours on X be simply $G_X = \widetilde{\mathbb{W}}(X)$.

• The inclusion $\mathbb{W}(X) \hookrightarrow \mathbb{W}_X \hookrightarrow \mathbb{E}_X$ induces a functor $GI: S_X \to G_X$.

Observable criterion

Definition

An observable criterion consists for all positions X, of a subcategory $\mathbb{L}_X \hookrightarrow G_X$.

(2)

Interactive equivalence

Definition

For any strategy S on X and any pushout P

of positions with *I* of dimension 0, let S^{\perp_P} be the class of all strategies *T* on *Y* such that $Gl(S \parallel T) \in \perp_Z$.

- Here || denotes amalgamation in the stack S.
- Let us make this concrete.

Fair testing

Definition

A closed-world story is successful when it contains a \heartsuit_n .

Definition

Given a global behaviour $G \in G_X$, an extension of a state $s \in G(U)$ to U' is an $s' \in G(U')$ with $i: U \to U'$ and $s' \cdot i = s$.

Definition

The fair criterion \mathbb{L}_X^f contains all global behaviours G such that any state $s \in G(U)$ for finite U admits a successful extension.

Must testing

Definition

An extension of $s \in G(U)$ is strict when $U \rightarrow U'$ is not surjective.

Definition

For any global behaviour $G \in G_X$, a state $s \in G(U)$ is G-maximal when it has no strict extension.

Definition

Let the must criterion \mathbb{L}_X^m consist of all global behaviours G such that for all closed-world U, and G-maximal $s \in G(U)$, U is successful.

The key result

Theorem

For any strategy S, any state $s \in Gl(S)(U)$ admits a Gl(S)-maximal extension.

Fair vs. must

Thanks to the theorem, we have:

Lemma

For all
$$S \in S_X$$
, $Gl(S) \in \mathbb{L}^m_X$ iff $Gl(S) \in \mathbb{L}^f_X$.

Proof.

Let G = Gl(S). (\Rightarrow) By the theorem, any state $s \in G(U)$ has a *G*-maximal extension $s' \in G(U')$, for which U' is successful by hypothesis, hence *s* has a successful extension. (\Leftarrow) Any *G*-maximal $s \in G(U)$ admits by hypothesis a successful extension which may only be on *U* by *G*-maximality, and hence *U* is successful.

Fair equals must

Theorem

For all
$$S, S' \in S_X$$
, $S \sim_m S'$ iff $S \sim_f S'$.

Proof.

 (\Rightarrow) Consider two strategies S and S' on X, and a strategy T on Y (as in the pushout P). We have:

$$\begin{aligned} \mathsf{GI}(S \parallel T) \in \mathbb{L}^{f} & \text{iff } \mathsf{GI}(S \parallel T) \in \mathbb{L}^{m} \\ & \text{iff } \mathsf{GI}(S' \parallel T) \in \mathbb{L}^{m} \\ & \text{iff } \mathsf{GI}(S' \parallel T) \in \mathbb{L}^{f} \end{aligned}$$

 (\Leftarrow) Symmetric.

Perspectives

Short term:

- Link with CCS.
- Kleene theorem.

Longer term:

- Treat π, λ, \ldots
- Understand the abstract structure.
- What is a compilation?