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Goal

Reconcile, in the particular case of Milner’s CCS,

Joyal, Nielsen, and Winskel’s 1993 (JNW) approach to
concurrency theory,

with

the interactive approach to behavioural equivalences:
I testing semantics in process algebra (Hennessy and De Nicola,

Beffara),
I Krivine realisability,
I game semantics (Hyland and Ong, Abramsky et al.), Girard’s

ludics.
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Review of JNW

Category P of (non-empty) paths, i.e.:
I objects: non-empty words over an alphabet A;
I morphisms: prefix extensions, e.g., abc → abcd .

Presheaves P̂, i.e., functors Pop → Set.

Presheaves are like trees. Examples ab + ac and a(b + c).

Natural transformations are like functional simulations.
Example.
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Positions

Let C be:

. . . n . . . p . . .

?.0

n−1

..
.

0

p−1

...

Definition

Positions are presheaves on C.

Positions form a category B.
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Example

F (?) = {a, b},
F (1) = {X1,X3},
F (2) = {X2},

F (?
0−→ 1)(X1) = a,

Notation: X1 · 0 = a.

X2 · 0 = a, X2 · 1 = b,

X3 · 0 = b.

X1 X2 X3

a b

0 0 1 0

The category of elements
∫

F .
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Moves from natural deduction, example: input

a1, . . . , an ` P

a1, . . . , an ` ai .P

Add an object ι−n,i to C:

? n ι−n,i

0

n − 1

s

t

···

and quotient by s ◦ j = t ◦ j for all j ∈ n.
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Motivating the definition
The category of elements of the representable ι−3,2 is the partially
ordered set generated by

t · 0
t t · 2

t · 1

ι−3,2

s · 0
s s · 2

s · 1.

Output: do the same with ι+n,i .
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Forking
The category of elements of the representable π3 is the partially
ordered set generated by

t10 = t20

t1 t2 t12 = t20

t11 = t21

π3

s0

s s2

s1.

Tom Hirschowitz and Damien Pous Fair testing vs. must testing in a fair setting 8/38



Goal Observations as presheaves Strategies as sheaves Strategies, stacks, and sketches Interactive equivalences

Name creation

The category of elements of the representable ν2 is the partially
ordered set generated by

t · 0

t t · 2

t · 1

ν2

s · 0

s

s · 1.

Tom Hirschowitz and Damien Pous Fair testing vs. must testing in a fair setting 9/38



Goal Observations as presheaves Strategies as sheaves Strategies, stacks, and sketches Interactive equivalences

Tick

t0

t t2

t1

♥3

s0

s s2

s1.
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Synchronisation: the 4th dimension

ρt0

ρt ρt2 = εt1 εt εt0

ρt1

ρ ε

ρs0

ρs ρs2 = εs1 εs εs0

ρs1.

τ3,2,2,1
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Examples

The two maximal executions of a | b, which are actually equal.

If a = b, one more execution.

An execution of a | µX .(X | X ).

Some “wrong” examples.
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Restrictions and moves

A restriction from X to Y is a cospan Y ↪→ X
id←−↩ X .

A move from X to Y is a cospan Y ↪→ M ←↩ X of presheaves
obtained

I from a cospan Y0
t’s
↪−−→ M0

s←−↩ X0,
I with M0 a representable of dim 2 or 3,
I by identifying some names.
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Observations

Definition

An observation is a presheaf U ∈ Ĉ isomorphic to a possibly
denumerable “composition” of moves and restrictions in
Cospan(Ĉ):

X0 X1 . . . Xn Xn+1 Xn+2 . . .

M0 . . . Mn Mn+1 . . .

U

The base is the morphism X0 ↪→ U.
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The category E of observations

Objects: X ↪→ U in Ĉ with
I U an observation,
I X its base;

Morphisms: all commuting squares

U V

X Y .

Obvious functor to positions π : E→ B:

(X ↪→ U) 7→ X .
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A Grothendieck topology

Let ? have dimension 0, n have dimension 1, and so on up to 3.

Definition

Let a sieve S on X ↪→ U in E be view-covering when it is jointly
surjective in dimension 1.
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Elementary views

An elementary view from X to Y is a composite of

a move from a representable,

followed by a restriction to a representable:

n′ ↪→ X
id←−↩ X ↪→ M ←↩ n.

Keeps track of one trajectory.
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Views

Definition

A view is an observation X ↪→ U isomorphic to a possibly
denumerable “composition” of elementary views.
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Views are a canonical covering

Proposition

For any observation X ↪→ U, the sieve generated by morphisms
from finite views into U is covering.

Proposition

Any covering sieve contains all morphisms from finite views.
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The categories EX

Here we want to relativise to a base position X .

Definition

Let EX have as objects U ←↩ Y → X , and morphisms
transformations between such with X fixed.

U U ′

Y Y ′

X

EX inherits a Grothendieck topology from E.
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Strategies as sheaves

Definition

Let the category SX of strategies on X be Sh(EX ).
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The stack of strategies

Proposition

This X 7→ SX extends to a functor S: Bop → CAT, which is a
stack for the restriction of the view-covering topology to B.

Why stacks?

Strategies are only sensible up to iso.

Intuitively, only the number of possible states should matter,
not the precise set of states.
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Canonical spatial decomposition

Let Sq(X ) =
∐
n

X (n).

Proposition

SX '
∏

(n,x)∈Sq(X )

Sn.
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Temporal decomposition

Let MX be the set of moves from X (explain the size).

For each i ∈MX , let Xi be the domain of i .

Theorem

Sn ' Fam

 ∏
i∈Mn

SXi

 .

A strategy is determined by

its initial states, and

what remains of them after each possible move.

Almost a sketch: would be Sn
∼=

∏
i∈Mn

SXi
.
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Scenarioses

In concurrency,

Physical, or fair scenario: players are really independent;

Interpreted, or potentially unfair scenario: a scheduler is
responsible for parallelism.
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Must testing

Supposing a fixed move ♥:

Definition

A process P is must orthogonal to a context C , when all maximal
traces of C [P] play ♥ at some point.
Notation: P⊥mC , P⊥

m
.

Definition

P and Q are must equivalent, notation P ∼m Q, when
P⊥

m
= Q⊥

m
.
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Must testing in an unfair setting

Usually, only the unfair scenario is formalised:

P = (Ω | a) and Q = Ω

are must equivalent.

The obvious test C = a.♥ |� is not orthogonal to P.

Indeed, there is an infinite looping trace, maximal.
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Fair testing in an unfair setting
The example

(Ω | a) ∼m Ω

takes potential unfairness of the scheduler into account.

Usually people do not want to, and resort to:

Definition

A process P is fair orthogonal to a context C , when all finite traces
of C [P] extend to traces that play ♥ at some point.

Notation: P⊥f C , P⊥
f
.

Definition

P and Q are fair equivalent, notation P ∼f Q, when P⊥
f

= Q⊥
f
.

Solves the issue.
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Closed-world observations

Definition

An observation X ↪→ U is closed-world when both∐
n,i

U(ι+n,i )
ε←−

∐
n,i ,m,j

U(τn,i ,m,j)
ρ−→

∐
n,i

U(ι−n,i ) (1)

are surjective.
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Global behaviours

Let W ↪→ E be the full subcategory of closed-world
observations.

Let W(X ) be the fibre over X for the projection functor
W→ B.

Definition

Let the category of global behaviours on X be simply GX = Ŵ(X ).

The inclusion W(X ) ↪→WX ↪→ EX induces a functor
Gl : SX → GX .
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Observable criterion

Definition

An observable criterion consists for all positions X , of a
subcategory ⊥⊥X ↪→ GX .
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Interactive equivalence

Definition

For any strategy S on X and any pushout P

I Y

X Z

(2)

of positions with I of dimension 0, let S⊥⊥P be the class of all
strategies T on Y such that Gl(S ‖ T ) ∈ ⊥⊥Z .

Here ‖ denotes amalgamation in the stack S.

Let us make this concrete.
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Fair testing

Definition

A closed-world story is successful when it contains a ♥n.

Definition

Given a global behaviour G ∈ GX , an extension of a state
s ∈ G (U) to U ′ is an s ′ ∈ G (U ′) with i : U → U ′ and s ′ · i = s.

Definition

The fair criterion ⊥⊥f
X contains all global behaviours G such that

any state s ∈ G (U) for finite U admits a successful extension.
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Must testing

Definition

An extension of s ∈ G (U) is strict when U → U ′ is not surjective.

Definition

For any global behaviour G ∈ GX , a state s ∈ G (U) is G -maximal
when it has no strict extension.

Definition

Let the must criterion ⊥⊥m
X consist of all global behaviours G such

that for all closed-world U, and G -maximal s ∈ G (U), U is
successful.
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The key result

Theorem

For any strategy S, any state s ∈ Gl(S)(U) admits a
Gl(S)-maximal extension.
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Fair vs. must

Thanks to the theorem, we have:

Lemma

For all S ∈ SX , Gl(S) ∈ ⊥⊥m
X iff Gl(S) ∈ ⊥⊥f

X .

Proof.

Let G = Gl(S).
(⇒) By the theorem, any state s ∈ G (U) has a G -maximal
extension s ′ ∈ G (U ′), for which U ′ is successful by hypothesis,
hence s has a successful extension.
(⇐) Any G -maximal s ∈ G (U) admits by hypothesis a successful
extension which may only be on U by G -maximality, and hence U
is successful.
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Fair equals must

Theorem

For all S , S ′ ∈ SX , S ∼m S ′ iff S ∼f S ′.

Proof.

(⇒) Consider two strategies S and S ′ on X , and a strategy T on
Y (as in the pushout P). We have:

Gl(S ‖ T ) ∈ ⊥⊥f iff Gl(S ‖ T ) ∈ ⊥⊥m

iff Gl(S ′ ‖ T ) ∈ ⊥⊥m

iff Gl(S ′ ‖ T ) ∈ ⊥⊥f .

(⇐) Symmetric.
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Perspectives

Short term:

Link with CCS.

Kleene theorem.

Longer term:

Treat π, λ, . . .

Understand the abstract structure.

What is a compilation?
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