Fair testing vs. must testing in a fair setting

Tom Hirschowitz and Damien Pous

Amsterdam, Novembre 2010
Reconcile, in the particular case of Milner’s CCS,

- Joyal, Nielsen, and Winskel’s 1993 (JNW) approach to concurrency theory,

with

- the interactive approach to behavioural equivalences:
 - testing semantics in process algebra (Hennessy and De Nicola, Beffara),
 - Krivine realisability,
 - game semantics (Hyland and Ong, Abramsky et al.), Girard’s ludics.
Review of JNW

- Category \mathbb{P} of (non-empty) paths, i.e.:
 - objects: non-empty words over an alphabet \mathcal{A};
 - morphisms: prefix extensions, e.g., $abc \to abcd$.
- Presheaves $\widehat{\mathbb{P}}$, i.e., functors $\mathbb{P}^{op} \to \text{Set}$.
- Presheaves are like trees. Examples $ab + ac$ and $a(b + c)$.
- Natural transformations are like functional simulations. Example.
Positions

Let C be:

\[\ldots \xrightarrow{n} \ldots \xleftarrow{n-1} \ldots \xrightarrow{0} \ldots \xleftarrow{p-1} \ldots \]

Definition

Positions are presheaves on C.

Positions form a category \mathbb{B}.
Example

- $F(\ast) = \{a, b\}$,
- $F(1) = \{X_1, X_3\}$,
- $F(2) = \{X_2\}$,
- $F(\ast \overset{0}{\to} 1)(X_1) = a$,
 - Notation: $X_1 \cdot 0 = a$.
- $X_2 \cdot 0 = a$, $X_2 \cdot 1 = b$,
- $X_3 \cdot 0 = b$.

The category of elements $\int F$.

![Diagram of the category of elements $\int F$.](image-url)
Moves from natural deduction, example: input

\[
\frac{a_1, \ldots, a_n \vdash P}{a_1, \ldots, a_n \vdash a_i.P}
\]

Add an object \(\iota_{n,i} \) to \(\mathcal{C} \):

\[
\begin{array}{c}
\star \\
\ldots \\
n - 1 \\
n \\
s \\
t \\
\iota_{n,i}
\end{array}
\]

and quotient by \(s \circ j = t \circ j \) for all \(j \in n \).
Motivating the definition

The category of elements of the representable \(\iota_{3,2} \) is the partially ordered set generated by

\[
\begin{array}{c}
\text{s} \cdot 0 \\
\text{s} \cdot 1. \\
\text{t} \cdot 0 \\
\text{t} \cdot 1 \\
\text{t} \\
\text{t} \cdot 2 \\
\text{s} \\
\text{s} \cdot 2
\end{array}
\]

Output: do the same with \(\iota_{n,i}^+ \).
Forking

The category of elements of the representable π_3 is the partially ordered set generated by

- $t_10 = t_20$
- $t_11 = t_21$
- $s0$
- $s1.$
- $s2$
Name creation

The category of elements of the representable ν_2 is the partially ordered set generated by

\[t \cdot 0 \rightarrow t \rightarrow t \cdot 2 \]
\[t \cdot 1 \Downarrow \nu_2 \]
\[s \cdot 0 \rightarrow s \rightarrow s \cdot 1. \]
Tick

\begin{center}
\begin{tikzpicture}
 \node (t0) at (0,0) {t_0};
 \node (t1) at (1,-1) {t_1};
 \node (s0) at (0,-2) {s_0};
 \node (s1) at (1,-3) {s_1};
 \node (s2) at (2,-2) {s_2};
 \node (t) at (1,0) {t};
 \node (t2) at (2,0) {t_2};

 \draw[->] (t0) to (t1);
 \draw[->] (t0) to (s1);
 \draw[->] (t1) to (t);
 \draw[->] (t1) to (s0);
 \draw[->] (t2) to (t);
 \draw[->] (t2) to (s2);
 \draw[->] (s0) to (s1);
 \draw[->] (s1) to (s2);
 \draw[->] (t) to (s);
 \draw[->] (t) to (s);
 \draw[->] (s) to (t);
 \draw[->] (s) to (t);

 \node[below] at (t) {\heartsuit_3};
\end{tikzpicture}
\end{center}
Synchronisation: the 4th dimension

\[
\begin{align*}
\rho t_0 \\
\rho t_1 & \quad \rho t \quad \rho t_2 = \epsilon t_1 & \quad \epsilon t & \quad \epsilon t_0 \\
\rho s_0 \\
\rho s_1. & \quad \rho s & \quad \rho s_2 = \epsilon s_1 & \quad \epsilon s & \quad \epsilon s_0 \\
\end{align*}
\]
Examples

- The two maximal executions of $\bar{a} | b$, which are actually equal.
- If $a = b$, one more execution.
- An execution of $\bar{a} | \mu X.(X | X)$.
- Some “wrong” examples.
Restrictions and moves

- A **restriction** from X to Y is a cospan $Y \leftarrow X \leftarrow id \ X$.
- A **move** from X to Y is a cospan $Y \leftarrow M \leftarrow X$ of presheaves obtained
 - from a cospan $Y_0 \xleftarrow{t's} M_0 \xrightarrow{s} X_0$,
 - with M_0 a representable of dim 2 or 3,
 - by identifying some names.
Observations

Definition

An observation is a presheaf $U \in \hat{C}$ isomorphic to a possibly denumerable “composition” of moves and restrictions in $\text{Cospan}(\hat{C})$:

\[
\begin{array}{ccccccc}
X_0 & \rightarrow & X_1 & \rightarrow & \cdots & \rightarrow & X_n & \rightarrow & X_{n+1} & \rightarrow & X_{n+2} & \rightarrow & \cdots \\
\downarrow & & \downarrow & & \cdots & & \downarrow & & \downarrow & & \downarrow & & \cdots \\
M_0 & \rightarrow & \cdots & \rightarrow & M_n & \rightarrow & M_{n+1} & \rightarrow & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
U & & & & & & & & & & & \\
\end{array}
\]

The base is the morphism $X_0 \rightarrow U$.

Tom Hirschowitz and Damien Pous
Fair testing vs. must testing in a fair setting
14/38
The category \mathcal{E} of observations

- **Objects**: $X \hookrightarrow U$ in $\hat{\mathcal{C}}$ with
 - U an observation,
 - X its base;

- **Morphisms**: all commuting squares

\[
\begin{array}{ccc}
U & \rightarrow & V \\
\uparrow & & \uparrow \\
X & \rightarrow & Y.
\end{array}
\]

- **Obvious functor to positions** $\pi: \mathcal{E} \rightarrow \mathcal{B}$:

\[(X \hookrightarrow U) \mapsto X.\]
A Grothendieck topology

Let \star have dimension 0, n have dimension 1, and so on up to 3.

Definition

Let a sieve S on $X \hookrightarrow U$ in \mathbb{E} be **view-covering** when it is jointly surjective in dimension 1.
Elementary views

An elementary view from X to Y is a composite of

- a move from a representable,
- followed by a restriction to a representable:

$$n' \hookrightarrow X \xleftarrow{id} X \hookrightarrow M \xleftarrow{} n.$$

Keeps track of one trajectory.
Views

Definition

A view is an observation $X \hookrightarrow U$ isomorphic to a possibly denumerable “composition” of elementary views.
Views are a canonical covering

Proposition

For any observation $X \hookrightarrow U$, the sieve generated by morphisms from finite views into U is covering.

Proposition

Any covering sieve contains all morphisms from finite views.
The categories \mathcal{E}_X

Here we want to relativise to a base position X.

Definition

Let \mathcal{E}_X have as objects $U \leftarrow Y \rightarrow X$, and morphisms transformations between such with X fixed.

\mathcal{E}_X inherits a Grothendieck topology from \mathcal{E}.

$U \leftarrow Y \rightarrow X$
Strategies as sheaves

Definition
Let the category S_X of strategies on X be $\text{Sh}(\mathbb{E}_X)$.
The stack of strategies

Proposition

This $X \mapsto S_X$ extends to a functor $S: \mathcal{B}^{\text{op}} \to \text{CAT}$, which is a stack for the restriction of the view-covering topology to \mathcal{B}.

Why stacks?

- Strategies are only sensible up to iso.
- Intuitively, only the number of possible states should matter, not the precise set of states.
Let $\text{Sq}(X) = \bigsqcup_n X(n)$.

Proposition

$$S_X \simeq \prod_{(n,x) \in \text{Sq}(X)} S_n.$$
Temporal decomposition

- Let \mathcal{M}_X be the set of moves from X (explain the size).
- For each $i \in \mathcal{M}_X$, let X_i be the domain of i.

Theorem

\[S_n \simeq \text{Fam} \left(\prod_{i \in \mathcal{M}_n} S_{X_i} \right). \]

A strategy is determined by

- its initial states, and
- what remains of them after each possible move.

Almost a sketch: would be $S_n \simeq \prod_{i \in \mathcal{M}_n} S_{X_i}$.
Scenarioses

In concurrency,

- Physical, or *fair* scenario: players are really independent;
- Interpreted, or *potentially unfair* scenario: a scheduler is responsible for parallelism.
Must testing

Supposing a fixed move \heartsuit:

Definition

A process P is **must orthogonal** to a context C, when all maximal traces of $C[P]$ play \heartsuit at some point. Notation: $P \perp^m C$, $P \perp^m$.

Definition

P and Q are **must equivalent**, notation $P \sim^m Q$, when $P \perp^m = Q \perp^m$.
Must testing in an unfair setting

Usually, only the unfair scenario is formalised:

\[P = (\Omega \mid \overline{a}) \quad \text{and} \quad Q = \Omega \]

are must equivalent.

The obvious test \(C = a.\heartsuit \mid \square \) is not orthogonal to \(P \).

Indeed, there is an infinite looping trace, maximal.
Fair testing in an unfair setting

- The example

\[(\Omega \mid \bar{a}) \sim_m \Omega\]

takes potential unfairness of the scheduler into account.

- Usually people do not want to, and resort to:

 Definition

 A process P is **fair orthogonal** to a context C, when all finite traces of $C[P]$ extend to traces that play \heartsuit at some point.

 Notation: $P \perp^f C$, $P \perp^f$.

 Definition

 P and Q are **fair equivalent**, notation $P \sim_f Q$, when $P \perp^f = Q \perp^f$.

 Solves the issue.
Closed-world observations

Definition

An observation $X \hookrightarrow U$ is closed-world when both

$$\prod_{n,i} U(\iota^+_{n,i}) \leftrightarrow \prod_{n,i,m,j} U(\tau_{n,i,m,j}) \xrightarrow{\rho} \prod_{n,i} U(\iota^-_{n,i})$$

are surjective.
Global behaviours

- Let $\mathcal{W} \hookrightarrow \mathcal{E}$ be the full subcategory of closed-world observations.
- Let $\mathcal{W}(X)$ be the fibre over X for the projection functor $\mathcal{W} \rightarrow \mathcal{B}$.

Definition

Let the category of **global behaviours** on X be simply $G_X = \mathcal{W}(X)$.

- The inclusion $\mathcal{W}(X) \hookrightarrow \mathcal{W}_X \hookrightarrow \mathcal{E}_X$ induces a functor $Gl: S_X \rightarrow G_X$.
Observable criterion

Definition

An *observable criterion* consists for all positions X, of a subcategory $\mathcal{L}_X \hookrightarrow G_X$.
Interactive equivalence

Definition

For any strategy S on X and any pushout P

\[
\begin{array}{c}
I \\ \downarrow \\
X \\
\end{array} \quad \begin{array}{c}
\rightarrow \\
Y \\
\downarrow \\
\rightarrow \\
Z \\
\end{array}
\]

of positions with I of dimension 0, let $S \perp^P$ be the class of all strategies T on Y such that $\text{Gl}(S \parallel T) \in \perp Z$.

- Here \parallel denotes amalgamation in the stack S.
- Let us make this concrete.
Fair testing

<table>
<thead>
<tr>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>A closed-world story is successful when it contains a \Diamond_n.</td>
</tr>
<tr>
<td>Definition</td>
<td>Given a global behaviour $G \in G_X$, an extension of a state $s \in G(U)$ to U' is an $s' \in G(U')$ with $i: U \rightarrow U'$ and $s' \cdot i = s$.</td>
</tr>
<tr>
<td>Definition</td>
<td>The fair criterion \perp^f_X contains all global behaviours G such that any state $s \in G(U)$ for finite U admits a successful extension.</td>
</tr>
</tbody>
</table>
Must testing

Definition

An extension of \(s \in G(U) \) is **strict** when \(U \to U' \) is not surjective.

Definition

For any global behaviour \(G \in \mathcal{G}_X \), a state \(s \in G(U) \) is **G-maximal** when it has no strict extension.

Definition

Let the **must** criterion \(\perp^m_X \) consist of all global behaviours \(G \) such that for all closed-world \(U \), and \(G \)-maximal \(s \in G(U) \), \(U \) is successful.
The key result

Theorem

For any strategy S, any state $s \in \text{Gl}(S)(U)$ admits a $\text{Gl}(S)$-maximal extension.
Fair vs. must

Thanks to the theorem, we have:

Lemma

For all $S \in S_X$, $Gl(S) \in \bot_X^m$ iff $Gl(S) \in \bot_X^f$.

Proof.

Let $G = Gl(S)$.

(\Rightarrow) By the theorem, any state $s \in G(U)$ has a G-maximal extension $s' \in G(U')$, for which U' is successful by hypothesis, hence s has a successful extension.

(\Leftarrow) Any G-maximal $s \in G(U)$ admits by hypothesis a successful extension which may only be on U by G-maximality, and hence U is successful.
Fair equals must

Theorem

For all $S, S' \in S_X$, $S \sim_m S' \iff S \sim_f S'$.

Proof.

(\Rightarrow) Consider two strategies S and S' on X, and a strategy T on Y (as in the pushout P). We have:

$$\text{Gl}(S \parallel T) \in \bot^f \iff \text{Gl}(S \parallel T) \in \bot^m$$

$$\text{iff } \text{Gl}(S' \parallel T) \in \bot^m \iff \text{Gl}(S' \parallel T) \in \bot^f.$$

(\Leftarrow) Symmetric.
Perspectives

Short term:
- Link with CCS.
- Kleene theorem.

Longer term:
- Treat π, λ, \ldots
- Understand the abstract structure.
- What is a compilation?