Innocent strategies as sheaves, and interactive equivalences for CCS

Tom Hirschowitz and Damien Pous

PPS, Février 2010
Programming languages: a technology

Claim

Research in programming languages is mainly **technological**.

Applies a non-formalised method, e.g.:

- Syntax.
- Quotienting by variable renaming \((x \mapsto x = y \mapsto y) \).
- Reduction relation to model program execution.
- Reasoning on reduction.
Programming languages: a technology

Claim
Research in programming languages is mainly technological.

Long-term goal
Contribute to finding a general setting for this.

Leads to stupid questions like:
- What is a programming language?
- What is an observational equivalence?
- What is a compilation?
Related work

- Does not account for calculi with a structural congruence.
- Formats and their functorial interpretation by Plotkin and Turi.
- Anything else?
Outline

- A category \mathbb{E} of executions, with a (Grothendieck) topology on \mathbb{E}.

Innocent strategies as sheaves.

- The stack of strategies.

Interaction by amalgamation.

- Notions of observation.

Fair testing $=$ must testing.
Positions

- •’s = players,
- ○’s = channels.
- Close to (multi-hole) active contexts in CCS:
 \[\nu abc.X_1(a, c)|X_2(a, b, c)|X_3(b, c). \]
Moves from natural deduction: in/out

\[
\frac{a_0, \ldots, a_{n-1} \vdash P}{a_0, \ldots, a_{n-1} \vdash a_i \cdot P}
\]

Output: same with a \(\iota_{n,i}^+ \).
Moves from natural deduction: parallel composition

\[
\frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash P \mid Q}
\]

\[
\pi_2
\]

\[
Y \downarrow M \downarrow X
\]
Moves from natural deduction: name creation

\[\Gamma, a \vdash P \quad \Rightarrow \quad \Gamma \vdash \nu a. P \]
Moves from natural deduction: tick

\[\Gamma \vdash P \]
\[\Gamma \vdash \lozenge.P \]

A cheap daimon.
Synchronisation

\[a.P \mid \bar{a}.Q \rightarrow P \mid Q \]
Executions

Glueings of diagrams of the above kind together:

- horizontally,
- vertically (possibly denumerable).

Keeping track of the base position: $X \hookrightarrow U$.
A word on representing executions

- These diagrams: formalised as certain presheaves on a category \mathcal{C}.
- Basic diagrams: representables.
- Glueing $=$ taking colimits.

More in the end if time permits.
The category \mathcal{E} of executions

- Objects: $X \hookrightarrow U$ well-formed.
- Morphisms: all commuting squares

\[
\begin{array}{ccc}
U & \rightarrow & V \\
\downarrow & & \downarrow \\
X & \rightarrow & Y.
\end{array}
\]

- Obvious functor $\pi: \mathcal{E} \rightarrow \mathcal{B}$:

$$(X \hookrightarrow U) \mapsto X,$$

where \mathcal{B} is the category of positions.
A Grothendieck topology

- We will now introduce a Grothendieck topology on \mathbb{E}.
- Whose canonical neighbourhoods will be views, in a sense very close to game semantics.

First we recall the definition of a Grothendieck topology.
Sieves

Definition

A **sieve** on an object U is

- a class of morphisms to U
- stable under precomposition by arbitrary morphisms.

Equivalently:

- A subpresheaf of the representable $\mathbb{E}(-, U)$.
- A subfibration of the domain fibration $\mathbb{E}/U \to \mathbb{E}$.
Grothendieck topologies

Definition

A **Grothendieck topology** \(J \) on \(\mathcal{E} \) assigns to each object \(U \) a class \(J(U) \) of sieves satisfying

1. the total sieve \(\mathcal{E}(-, U) \) is in \(J(U) \);
2. if \(S \in J(U) \) and \(f : V \to U \), then \(f^*(S) \in J(V) \);
 (A covering sieve restricts to covering sieves on all opens.)
3. if \(S \in J(U) \) and \(R \) is another sieve on \(U \), then if for all \(f : V \to U \) in \(S \) we have \(f^*(R) \in J(V) \), then \(R \in J(U) \).
 (If a sieve covers all the opens of a covering sieve, then it is covering.)

Here \(f^*(S) = \{ g : W \to V \mid fg \in S \} \).
Our Grothendieck topology

Let \star have dimension 0, n have dimension 1, and so on up to 3.

Definition

Let a sieve S on $X \hookrightarrow U$ in E be **view-covering** when it is jointly surjective in dimensions 1 and 2.

- Apart from unused channel names, this also implies surjectivity in dim 0.
- Let’s get to views.
Representable sequents

A **representable sequent**, denoted by n is a position with

- one player,
- knowing n names:

```
  .
```

```
  .  .  .
```

Tom Hirschowitz and Damien Pous

Innocent strategies as sheaves...
Elementary views

Definition

An elementary view V from n to n' is a cospan $n \hookrightarrow V \leftarrow n'$ isomorphic to a composite of

- a move M from a representable sequent n,
- followed by a restriction to a representable sequent n',

i.e., a cospan of the shape

$$n \hookrightarrow M \leftarrow X \leftarrow n'.$$
Views

Definition

A view is a possibly denumerable (vertical) composition of elementary views in $\text{Cospan}(\hat{C})$.

Examples.
Views form a canonical covering

Proposition

For any execution $X \hookrightarrow U$, the sieve generated by morphisms from views into U is covering.

Proposition

Any covering sieve contains all morphisms from views.
Sheaves on a site

Let \(\mathbb{E} \) be equipped with a Grothendieck topology \(J \).

Definition

A presheaf \(F \) is a sheaf when for any sieve \(S \) covering \(U \), precomposition by \(S \hookrightarrow U \) yields a bijection

\[
\hat{\mathbb{E}}(U, F) \cong \hat{\mathbb{E}}(S, F).
\]

Let \(\text{Sh}(\mathbb{E}) \) the full subcategory of such.

\(U \rightarrow F \)

\(S \)

(Notation: \(U = \mathbb{E}(\cdot, U) \).)

(Being defined on the opens in \(S \) is enough.)
Relativising to a base position X

Definition

Let $(\mathbb{E})_X$ have

- as objects $U \leftarrow Y \rightarrow X$, with $Y \leftarrow U$ well-formed, and
- as morphisms commuting diagrams

\[
\begin{array}{ccc}
U & \rightarrow & U' \\
\uparrow & & \uparrow \\
Y & \rightarrow & Y' \\
X. & & \\
\end{array}
\]

$(\mathbb{E})_X$ inherits a Grothendieck topology from \mathbb{E}.
Strategies as sheaves

Definition

Let the category S_X of strategies on X be $\text{Sh}((E)_X)$.

Intuition: a strategy S specifies for each execution $E \in (E)_X$ a number of ways for it to accept E.
Restriction to a subposition

- Consider \(Y \to X \), and a strategy \(S \in S_X \).
- Let \(S|_Y \) send \(U \leftrightarrow Z \to Y \) to
 \[S(U \leftrightarrow Z \to Y \to X). \]
- This extends to morphisms.

Proposition

This forms a functor \(S : \mathcal{B}^{op} \to \text{CAT} \).
The stack of strategies

Proposition

This functor \(S : \mathcal{B}^{\text{op}} \to \text{CAT} \) is a stack for the “surjective in dim 1” topology on \(\mathcal{B} \).

- Stacks are like sheaves but one dimension up.
- For sheaves: a bijection \(\hat{E}(U, F) \cong \hat{E}(S, F) \).
- For stacks: an equivalence of categories.
- Known fact: sheaves on slices form a stack.
- Here: mild generalisation.
- Why stacks? Intuitively, only the number of possible states should matter, not the precise set of states.
Canonical covering in \mathbb{B}

Proposition

For a given position X, the collection of morphisms $n \to X$ (for all n) is covering in \mathbb{B}.

Proposition

Any covering contains it.
Canonical covering continued

For any square

\[
\begin{array}{ccc}
Y & \xrightarrow{n} & n \\
\downarrow & & \downarrow x \\
m & \xrightarrow{x'} & X
\end{array}
\]

with \(x \neq x' \), \(Y \) has dimension 0.
Canonical covering continued

Proposition

If Y has dim 0, then $S_Y \simeq 1$.

Indeed:

- any execution U on Y is covered by the empty family,
- which has a unique $\emptyset \rightarrow F$ for any sheaf F,
- so $F(U) \simeq 1$, which determines F up to iso.
Canonical spatial decomposition

Let $\text{Sq}(X) = \coprod_n X(n)$.

Proposition

$S_X \simeq \prod_{(n,x) \in \text{Sq}(X)} S_n$.
Temporal decomposition

- Let \mathcal{M}_X be the set of possible moves from X (explain the size).
- For each $i \in \mathcal{M}_X$, let X_i be the domain of the corresponding move.
- For any \mathcal{C}, let $\text{Fam}(\mathcal{C})$ denote the category with
 - objects families $f : X \to \text{ob} \mathcal{C}$,
 - morphisms $f \to g$ the pairs of
 - $u : X \to Y$ such that $gu = f$, and
 - $v : X \to \mathcal{C}_1$ with
 \[\text{dom} v(x) = f(x) \quad \text{cod}(v(x)) = g(u(x)). \]

Examples.
Temporal decomposition

\textbf{Theorem}

\textit{Equivalence of categories:} \(S_n \cong \text{Fam} \left(\prod_{i \in \mathcal{M}_n} S_{X_i} \right) \).

A strategy is determined by
- its initial states, and
- what remains of them after each possible move.

Almost a sketch: would be a bijection of sets

\[S_n \cong \prod_{i \in \mathcal{M}_n} S_{X_i}. \]
Scenarios

In concurrency,

- Physical, or **fair** scenario: players are really independent;
- Interpreted, or **potentially unfair** scenario: a scheduler is responsible for parallelism.
Must testing

Supposing a fixed move \heartsuit:

Definition

A process P is **must orthogonal** to a context C, when all maximal traces of $C[P]$ play \heartsuit at some point.

Notation: $P \perp^m C$, $P \perp^m$.

Definition

P and Q are **must equivalent**, notation $P \sim^m Q$, when $P \perp^m = Q \perp^m$.
Must testing in an unfair setting

Usually, only the unfair scenario is formalised:

\[P = (\Omega \mid \bar{a}) \quad \text{and} \quad Q = \Omega \]

are must equivalent.

The obvious test \(C = a.\heartsuit \mid \square \) is not orthogonal to \(P \).

Indeed, there is an infinite looping trace, maximal.
Fair testing in an unfair setting

- The example

\[(\Omega \mid \overline{a}) \sim_m \Omega\]

takes potential unfairness of the scheduler into account.

- Usually people do not want to, and resort to:

Definition

A process \(P\) is **fair orthogonal** to a context \(C\), when all finite traces of \(C[P]\) extend to traces that play ♥ at some point.

Notation: \(P \perp_f C\), \(P \perp_f\).

Definition

\(P\) and \(Q\) are **fair equivalent**, notation \(P \sim_f Q\), when \(P \perp_f = Q \perp_f\).

Solves the issue.
Closed-world observations

Definition

An observation \(X \leftrightarrow U \) is **closed-world** when both

\[
\prod_{n,i} U(\nu^+_{n,i}) \leftrightarrow \prod_{n,i,m,j} U(\tau_{n,i,m,j}) \overset{\rho}{\longrightarrow} \prod_{n,i} U(\nu^-_{n,i})
\]

are surjective.
Global behaviours

- Let $\mathcal{W} \hookrightarrow \mathcal{E}$ be the full subcategory of closed-world observations.
- Let $\mathcal{W}(X)$ be the fibre over X for the projection functor $\mathcal{W} \rightarrow \mathcal{B}$.

Definition

Let the category of global behaviours on X be simply $G_X = \overline{\mathcal{W}(X)}$.

- Cf. Joyal, Nielsen, and Winskel.
- The inclusion $\mathcal{W}(X) \hookrightarrow (\mathcal{E})_X$ induces a functor $G_I : S_X \rightarrow G_X$.
Observable criterion

Definition

An **observable criterion** consists for all positions X, of a subcategory $\bot_X \hookrightarrow G_X$.
Interactive equivalence

Definition

For any strategy S on X and any pushout P

$$
\begin{array}{c}
I \\
\downarrow \\
X
\end{array}
\quad
\begin{array}{c}
\longrightarrow \\

Y \\
\downarrow \\
\longrightarrow \\
Z
\end{array}
$$

(2)

of positions with I of dimension 0, let $S \perp_P$ be the class of all strategies T on Y such that $Gl(S \parallel T) \in \perp Z$.

- Here \parallel denotes amalgamation in the stack S.
- Let us make this concrete.
Fair testing

Definition

A closed-world execution is **successful** when it contains a \heartsuit_n.

Definition

Given a global behaviour $G \in G_X$, an **extension** of a state $s \in G(U)$ to U' is an $s' \in G(U')$ with $i: U \to U'$ and $s' \cdot i = s$.

Definition

The **fair** criterion \perp^f_X contains all global behaviours G such that any state $s \in G(U)$ for finite U admits a successful extension.
Must testing

Definition
An extension of $s \in G(U)$ is **strict** when $U \rightarrow U'$ is not surjective.

Definition
For any global behaviour $G \in G_X$, a state $s \in G(U)$ is G-**maximal** when it has no strict extension.

Definition
Let the **must** criterion \perp^m_X consist of all global behaviours G such that for all closed-world U, and G-maximal $s \in G(U)$, U is successful.
The key result

Theorem

For any strategy \(S \), any state \(s \in \text{Gl}(S)(U) \) admits a \(\text{Gl}(S) \)-maximal extension.
Fair vs. must

Thanks to the theorem, we have:

Lemma

For all $S \in S_X$, $Gl(S) \in \bot^m_X$ iff $Gl(S) \in \bot^f_X$.

Proof.

Let $G = Gl(S)$.

(\Rightarrow) By the theorem, any state $s \in G(U)$ has a G-maximal extension $s' \in G(U')$, for which U' is successful by hypothesis, hence s has a successful extension.

(\Leftarrow) Any G-maximal $s \in G(U)$ admits by hypothesis a successful extension which may only be on U by G-maximality, and hence U is successful.
Fair equals must

Theorem

For all $S, S' \in S_X$, $S \sim_m S'$ iff $S \sim_f S'$.

Proof.

(\Rightarrow) Consider two strategies S and S' on X, and a strategy T on Y (as in the pushout P). We have:

$$Gl(S \parallel T) \in \perp^f \iff Gl(S \parallel T) \in \perp^m$$

$$\text{iff } Gl(S' \parallel T) \in \perp^m$$

$$\text{iff } Gl(S' \parallel T) \in \perp^f.$$

(\Leftarrow) Symmetric.
Perspectives

Short term:
- We have a translation of CCS processes into this model.
- Identify the equivalence induced by this translation.

Longer term:
- Treat π, λ, \ldots
- Understand the abstract structure.
- What is a compilation?