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Position of the problem

color code : Yellow : dynamic boundary conditions , _

Consider the damped wave equation, with  dynamic boundary conditions and time
delay :

Uy — Au+ auy =0, xeQ, t>0,
u(x,t) =0, x €T, t>0,
utt(x,t):—@(x, t) — pur(x,t—7) x€l, t>0,

ov (1)
u(x,0) = uo(x) x €,
ue(x,0) = v (x) x e,
u(x,t = 1) = fo(x,t — 1) x €y, te(0,7),

where u = u(x,t), t >0, x € Q which is a bounded regular domain of R" | (N > 1),
0Q = To U Iy, mes(lo) >0,ToNT1 =@, a, u>0and up, u1, fo are given
functions. Moreover, T > 0 represents the time delay

Questions to be asked :

@ Existence, uniqueness and global existence?

@ s the stationary solution u = 0 stable and what is the rate of the decay?
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Dynamic boundary condition

uy — Au+ auy =0, xe, t>0,

u(x,t) =0, x€lo, t>0,
ou

uge(x, t) = —E(X, t) — pue(x,t)) xely, t>0,

u(x,0) = uo(x) x € Q,
ue(x,0) = u1(x) x €Q,
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@ Longitudinal vibrations in a homogeneous bar in which there are viscous effects, and
spring-mass system, Pellicer and Sola-Morales, 90's
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@ Q is an exterior domain of R*® in which homogeneous fluid is at rest except for
sound waves. Each point of the boundary is subjected to small normal
displacements into the obstacle. This type of dynamic boundary conditions are
known as acoustic boundary conditions, Beale , 80's
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Dynamic boundary condition
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and a lot of mix between these two types, Majda-Enquist 80's,

@ Q is an exterior domain of R*® in which homogeneous fluid is at rest except for
sound waves. Each point of the boundary is subjected to small normal
displacements into the obstacle. This type of dynamic boundary conditions are
known as acoustic boundary conditions, Beale , 80's

@ Wentzell boundary conditions for PDE , Jéréme Goldstein, Giséle Ruiz-Goldstein
and co workers, 2000's
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Related works : delay term in 1D

Datko [Dat91], showed that solutions of :
Wit — Wyxx — aWsxt = 0, x € (0,1), t >0,
w(0,t) =0, wi(l,t) = —kw, (1, t—7), t>0,

a, k, 7 > 0 become unstable for an arbitrarily small values of = and any values of a and
k. Datko et al [DLP86] treated the following one dimensional problem:

ue (X, t) — (X, t) + 2au(x, t) + %u(x,t) =0, 0<x<1, t>0,
u(0,t) =0, t>0, (2)
u(1,t) = —kue(1,t — 7), t>0,
e28 + 1
prrm— < 1 then the delayed feedback system is stable for all sufficiently small

2a
1
delays. If k% > 1, then there exists a dense open set D in (0, c0) such that for
e2a _

each 7 € D, system (2) admits exponentially unstable solutions.

If k

[Dat91] R. Datko. Two questions concerning the boundary control of certain elastic systems. J. Differential Equations,
02(1):27-44, 1901.

[DLP86] R. Datko, J. Lagnese, and M. P. Polis. An example on the effect of time delays in boundary feedback stabilization of
wave equations. SIAM J. Control Optim., 24(1):152-156, 1986.
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Related works : wave equations and boundary feedback delay

Recently, Ammari et al [ANP10] have treated the N—dimensional wave equation

ue(x, t) — Au(x, t) + au(x,t —7) =0, x€Q,t>0,

u(x,t) =0, x €Ty, t >0,

ou

a(x, t) = —ku(x, t), x el t>0, (3)
u(x,0) = up(x) xeQ,

e(x,0) = w1 (x) xeq,

u(x,t —7) = folx,t — 1) x el te(0,7),

Under the usual geometric condition on the domain €, they showed an exponential
stability result, provided that the delay coefficient a is sufficiently small.

[ANP10] K. Ammari, S. Nicaise, and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay,
Systems Control Lett., 59 (2010), pp. 623—628.
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Related works : wave equations and boundary feedback delay

Nicaise and Pignotti,[NP06], examined a system of wave equation with a linear boundary
damping term with a delay:

uy — Au =0, xe, t>0,

u(x,t) =0, x€lg, t>0,

%(x, t) = prue(x,t) + pou(x,t —7) x €Ty, t>0, 4)
u(x,0) = uo(x), x e,

ur(x,0) = w1 (x) x€eQ,

us(x,t — 1) = go(x, t — T) xe€Q,T>0,

and proved under the assumption p> < p1 that null stationary state is exponentially
stable. They also proved instability if this condition fails.

They also studied [NP08, NVFQ9], internal feedback, time-varying delay and distributed
delay.

[NP06] S. Nicaise and C. Pignotti. Stability and instability results of the wave equation with a delay term in the boundary or
internal feedbacks. SIAM J. Control Optim., 45(5):1561-1585, 2006.

[NP08] S. Nicaise and C. Pignotti. Stabilization of the wave equation with boundary or internal distributed delay. Diff. Int.
Equs., 21(9-10):935—958, 2008.

[NVF09] S. Nicaise, J. Valein, and E. Fridman. Stabilization of the heat and the wave equations with boundary time-varying
delays. DCDS-S., 52(3):559-581, 2000.
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Main results

@ Problem (1) has a unique global solution.
@ A shifted related problem has quadratic polynomial decay to zero.
© Numerical experiments show at least an exponential decay.
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© Well-posedness of the problem : existence and uniqueness.
@ Setup and notations
@ Semigroup formulation : existence and uniqueness.
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Setup and notations

First we reformulate the boundary delay problem, then by a semigroup approach
and using the Lumer-Phillips’ theorem we will prove the global existence.

Notations

o HL(Q)={ue H(Q)/ ur, =0}
71 the trace operator from H{ (Q) on L*(Ty)
HY2(1) = 1 (HE(Q)).

o E(A,L2(Q)) = {u € HYRQ) such that Au € [3(Q)}

For u € E(A, L3(Q)), % € H™Y2(T';) and we have Green's formula:

ou

/QVU(X)VV(X)dX = /Q —Au(x)v(x)dx + <51/; v>r1 Vv € HE (),

where (.;.)r, means the duality pairing H=%/2(I'y) and H'/2(Ty).
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Reformulation of the delay term

As in [NP06], we add the new variable:

z(x,p,t) = us (x,t —71p), xe€l1, pe(0,1), t>0. (5)
Then, we have

Tz (X, p,t) + 2, (x,p,t) =0, in [ x (0,1) x (0,400). (6)

Therefore, problem (1) is equivalent to:

uy — Au+ auy =0, xeQ, t>0
Tz:(x, p, t) + zp(x, p, t) = 0, x€l,pe(0,1),t>0
u(x,t) =0, x€lg, t>0
Ou

upe(x, t) = —%(x7 t) — pz(x,1,t) xe€Tly,t>0 (7)
z(x,0,t) = u(x, t) x€l,t>0
u(x,0) = up(x) x €
ur(x,0) = w1 (x) x€Q
z(x, p,0) = fo(x, —7p) xel, pe(0,1)
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© Well-posedness of the problem : existence and uniqueness.

@ Semigroup formulation : existence and uniqueness.
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Semigroup formulation

Let V := (u, ur,71(ur),z)"; then V satisfies the problem:

{ V/(t) = (ue, tee, 12 (uee), 20)T = AV(2), t>0, -
V(O) = Vo,

where ’ denotes the derivative with respect to time t, Vo := (uo, u1, v1(u1), fo(., —.7))"
and the operator A is defined by:

v

u
Au — av
A Y 1o}
= u
w 5 —#z(,1)
z 1
,;zp
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Domain and energy space

Energy space:
H = HL (Q) x L2(Q) x L2(Ty) x [*(T1) x L%(0,1),

‘H is a Hilbert space with respect to the inner product

1
<v, \7> z/Vu.Vﬁdx—i—/V\?dx—l—/ Wv"vda—i-f/ / 23dpdo
H Q Q Iy r, Jo

for V.= (u,v,w,z)7, V = (i,7,w,2)7 and ¢ defined later.
The domain of & is the set of V = (u, v, w,z)" such that:
(u,v,w,z)T € (HE(Q) NH3(Q)) x HE(Q) x L2(M1) x L2 (T; H*(0,1)),  (9)
w="(v)= z(.,,0) on ;. (10)

Definition of the “shifted” operator

Let us finally define £* = p7. For all £ > £* we also define u; = 25 + g and
T

qud=J27—p,1’.
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Existence result

Let Vo € H, then there exists a unique solution V € C (R.;H) of problem (8).
Moreover, if Vo € D (A), then

VeCR,;D(A))NCH (R H).

To prove Theorem 1, we first prove that there exists a unique solution
V € C(Ry; #) of the shifted problem:

V(0) = Vo, (11)

{ V/(t) = 4V(t), t>0,
Then as & = o7y + 1 |, there will exist V € C (Ry; 5) solution of problem (8).
In order to prove the existence and uniqueness of the solution of problem (11) we
use the semigroup approach and the Lumer-Phillips’ theorem.
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Sketch of the proof. First step : Ay is dissipative 1

Let V = (u,v,w,z)" € D(A), we have:

(AV, V), = /Vu.Vvdx+/ vAudx—/a|v(x)|2dx

Q 5 Q Q ¢ L
u
+/r1w<—$—uz(a,1)> da—;/rl/o zz,dpdo.

Using Green's formula and the compatibility condition (10) gives:

(AV,V) o =— /Q av(x)*dx — ,u/ z(o,1) wdo — /rl / z,zd pdx. (12)

B
But from the compatibility condition (10), we get:

1
/zpzdpda = 2§ / (vzfzz(a,l,t))da
T

1
(HV,V) :—/Qa|v(x)|2d _%/I]/o 7*(o, 1, t)do—l—% . lv]*(o)do

—u/ z(o,1) wdo .
51

(13)

Monastir 2016 18 / 40
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Sketch of the proof. First step : Ay is dissipative 2

Young's inequality gives :

_/ v(o,t)z(0,1)do < %/ z*(0,1)do + %/ v3(o, t)do
M1 M1 M

Using the definition of 1 = £ + % gives :

2T

AV, V)t /a|v(x Pdx— ,u/ V(o)) da+<2€ g) /rlzz(a,l)dago. (14)

g = o/ — pa l is dissipative

As £ = 7 we have V¢ > £* (% - %) > 0. We finally get:
o —pu )V, V <0. 15
(7-mr)v.v) < (15)
Thus the operator o7 = &/ — 1 | is dissipative.
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Al — A is surjective for all A > 0. Step 1 : formulation

For F = (f,f,f,f)T € 5,V = (u,v,w,z)" € (&) solution of

(M—-)V =F,
which is:
Au—v = fi, (16)
Av—Au+av = h, 17)
Aw + % +pz(,1) = fi (18)
Az + %zp = fi. (19)

To find V = (u,v,w,z)" € D (A) solution of the system (16), (17), (18) and (19), we
proceed as in [NP06], with two major changes:

© the dynamic condition on 'y which adds an unknown and an equation,

@ the presence of v = u; in this dynamic boundary condition.

We suppose u is determined with the appropriate regularity and we find V. )
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Outline

© Asymptotic behavior
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Main result for o7,

Theorem 2 (Polynomial decay)

Let £ > £*. Then there exists a constant C > 0 such that, for all Vo € 2(y), the
semigroup e'?4 satisfies the following estimate

o], < %

Lemma 3 (Asymptotic behavior of the spectrum)

tm\/H [Voll g(ar,y » ¥t > 0.

A Co semigroup e of contractions on a Hilbert space M satisfies

|

for some constant C > 0 and for § > 0 if and only if

p(£) > {if|B € R} =R,

tL C
e~ U H < — ||U
0 T ! I 0||D(£)

and

Il|g|15up Z || iBl — )71”[;(7{) < 00,

where p(L) denotes the resolvent set of the operator L.
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Non-compactness

Remark 1

In view of this theorem we need to identify the spectrum of «7; lying on the
imaginary axis. Unfortunately, as the embedding of 12 (Fl, H(0, 1)) into
L2(Ty x (0,1)) = L2 (I x L2(0,1)) is not compact, <% has not a compact
resolvent. Therefore its spectrum o (27 ) does not consist only of eigenvalues of
4. We have then to show that :

@ if (8 is a real number, then i3/ — o7, is injective and

@ if 5 is a real number, then i3] — o7y is surjective.

It is the objective of the two following lemmas.
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Eigenvalues of «7;. Reformulation

If B is a real number, then if3 is not an eigenvalue of <74.

dyZ =i = 2Z=0
dgZ = iBZ if and only if

(iB+pm)u—v = 0, (23)
(iB+pm)v—~Au+av = 0, (24)

. 7]
(iB+m)w + o +uz(,1) = 0, (25)
(iB+ pm1)z + %zp = 0. (26)
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Spectrum of .o7;.

By taking the inner product with Z and using (15), we get:

R(< AZ,Z >¢) < f/Qa|v(x)\2 dx — (% - g) . |z(c,1))? do. @7

Thus we firstly obtain that:
v=0and z(.,1) =0.
Next, according to (23), we have v = (i + p1) u. Thus we have u = 0; since
w = ~y1(v) = z(.,0), we obtain also w = 0 and z(.,0) = 0. Moreover as z satisfies (26)
by integration, we obtain:

2(.,p) = z(.,0) e TP,

But as z(.,0) = 0, we finally have z = 0.
Thus the only solution is the trivial one.

Let & > &*. If B is a real number, then if belongs to the resolvent set p(<Zy) of
Ay.

In view of Lemma 4 it is enough to show that i3/ — o7y is surjective.
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The spectrum estimate (22)

The resolvent operator of <7, satisfies condition (22) for 6 = 2.

Suppose that condition (22) is false with § = 2. By the Banach-Steinhaus Theorem,
there exists a sequence of real numbers 3, — +o0 and a sequence of vectors
Zy = (Un, Vo, Wn, Zn)" € D(Hy) with ||Z,|| ¢ = 1 such that

182(iBnl — Ha)Zul|l e =0 as n— oo, (28)
ie.,
B ((iBn + pa)un — va) = £, — 0 in H,(Q), (29)
B (iBaVn — Aup 4 (p1 + a)va) = g» — 0 in L3(Q), (30)
B ((i,B,, + p1)wn + % + pzi(., 1)) =h,— 0 in L*(T1), (31)
B (8,4 i)z + 20,21) = k50 in 373 x (0.1) (32)

since 8, < (2.
Our goal is to derive from (28) that ||Z,|| s converges to zero, thus there is a
contradiction.
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Sketch of the proof

We first notice that we have

183(iBnl — ) Zal e > [R (B2 (1Bl — 4)Zn, Zn) ) |- (33)
Then, by (27) and (28),
Bava—0, in L*(Q), Bnza(.,1) =0, in L*(T1), (34)
up — 0, Aup, — 0 in L*(Q) = u, =0 in HL(Q) . (35)
This further leads, by (31) and the trace theorem, to
wy, — 0 in L3(Fy). (36)
Moreover, since Z, € D(7), we have, by (36),
z0(.,0) = 0 in L*(I1). (37)
We have
20 p) = 22(., 0) e~ BrtmaITE 4 /p o (Brtua)r(o—s) %(5) ds. (38)
0 n

Which implies, according to (38), (37) and (32), that
z,— 0 in (M1 x (0,1))

and clearly contradicts || Z,|| ,, = 1.
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Outline

@ Numerical experiments
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The 1D problem

Q=(0,1), F'o = {0}, M, = {1}
To solve numerically problem (1), we have to consider its equivalent formulation, namely
problem (41), which writes in the present case:

Ut — Uxx +aur =0, x € (0,1), t>0,

u(0,t) =0, t>0,

ue(1,t) = —ue(1,t) — pz(x,1,t), t>0,

7z(1,p,t) + z,(1,p, t) = 0, p€(0,1),t>0, (39)
z(1,0,t) = u(1,t) t>0,

u(x,0) = uo(x) x € (0,1),

ue(x,0) = u1(x) x € (0,1),

z(1,p,0) = fo(1, —7p) p€(0,1).

Implicit Euler method for the time discretisation and finite difference (centered) for the
space discretisaiton. No CFL is needed. Without the control term au, the delay term
and with Dirichlet boundary conditions, the energy is conserved.

E(t) = H (u(., £), ue(, £), ue(1, 1), 2(1, . t))TH

M
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Numerical results

For every simulations the numerical parameters are the following:

T=2,{=20",Ax=5,Ap=5, At =01

up(x) = u1(x) = xe'® | f(1,p) = e”el® .
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Numerical results

Original problem. a = 1.00, 7 = 2.00
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Figure: Energy (in -log scale) versus time: influence of . Original problem
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Numerical results

?Shifted” problem. a = 1.00, 7 = 2.00
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Figure: Energy (in -log scale) versus time: influence of p. “Shifted” problem
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Numerical results
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Numerical results

”Shifted” problem. p = 1.00, 7 = 2.00
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Figure: Energy (in -log scale) versus time: influence of a. “Shifted” problem
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Outline

© Kelvin-Voigt Damping
o Existence and exponential decay
@ Numerical results
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Outline

© Kelvin-Voigt Damping
o Existence and exponential decay
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Changing the damping law

Let us consider now the same system as (1) but with a Kelvin-Voigt damping:

Ui — Au + aAut = 0,
u(x,t) =0,

ou
Utt(X, t) = —

u(x,0) = uo(x)
ue(x,0) = u1(x)
u(x, t — 1) = fo(x, t — T)

uyr — Au+ alAus =0,

z(x,0,t) = u(x, t)
u(x,0) = uo(x)
ue(x,0) = u1(x)

Z(Xv Ps 0) = fO(Xv —Tp)

(x t)—a

- (x, ) (x, = 7)

th(Xv P t) + ZP(X7 Ps t) =0,
u(x,t) =0,
Ou Ou;
up(x, t) = —E(X t) — QE(X, t) — pz(x,1,t)

xeQ, t>0,
x€lo, t>0,

xel, t>0, (40)
x €9Q,
x €Q,

xel, te(0,7),
x€Q, t>0
x€l,pe(0,1),t>0
x€lg, t>0

xel,t>0

xel,t>0

x € Q

x €N

x €l pe(0,1)
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Semigroup formulation

Let the operator <, defined by:

< =
>
<
+
)
>
<

L, = ou ov

<
Q
<
Q

The domain of @7, is the set of V = (u,v,w, z)" such that:

(u,v,w,z)T € (HE(Q) N H?(Q)) x HE(Q) x L2(T1) x L2 (T1; HY(0,1)), (42)
% € L%(ry), (43)

w=1(v) = z(.,0) on [1. (44)
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Poincaré's like constant

For ¢ € R, we define:

IV ul3 + cllull3r,

R 49)
Ca(c) is the first eigenvalue of the operator —A under the Dirichlet-Robin
boundary conditions:
u(x) =0, x €lg
{ %(X) +cu(x)=0 xel;. (46)
It exists a unique ¢* < 0 such that:
Ca(c*)=0. (47)
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Existence and exponential stability

In the following, we fix £ = p7 in the norm.

Theorem 7

Suppose that a and p satisfy the following assumption:
n<|c’|a. (48)

Then, the operator <k, generates a Co semigroup of contractions on 7. We have, in
particular, if Vo € A, then there exists a unique solution V € C (Ry; 5) of problem
(40). Moreover, if Vo € 2 (i), then

Ve C(Ry; 2 (o)) N CH (Ry; ).

[ X

Moreover the semigroup operator e is exponential stable on J#. We have the

following result.

Theorem 8

Suppose that the assumption (48) is satisfied. Then, there exist C,w > 0 such that for

all t > 0 we have

etd,w < Ce_wt.

L(#)
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A Cy semigroup et of contractions on a Hilbert space H satisfies, for all t > 0,
tL —wt
|le™ e < Ce™

for some constant C,w > 0 if and only if

p(L) D{iB | B € R} = IR, (49)
and
||ig|1 sup [[(181 = £) | 2y < 00, (50)

where p(L) denotes the resolvent set of the operator L.
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Outline

© Kelvin-Voigt Damping

@ Numerical results
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Numerical results

The constant ¢* must satisfy:

Thus we obtain ¢* = —1.

S. Gerbi (LAMA, USMB, Chambéry) Interior feedback stabilization Monastir 2016 39 / 40



Numerical results

Kelvin-Voigt damping. 4 = 1.00, 7 = 2.00

4001

—a= 0.2
—a= 080
—a= 0.7
350 a= 1.00
1.2
%.50
300 .
540
2.2
2.50

250

200

~Log(E()

50+

_50 I I I I I )
0 50 100 150 200 250 300

Time t

Figure: Influence of a.
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Numerical results

Kelvin-Voigt damping. a = 1.00, 7 = 2.00
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Figure: Influence of mu.
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Sharper estimate and instability result?

© Can we estimate the rate of decay with respect to the parameters a, u, 7 in
1D and a, u, 7, meas(2), meas('1) in multi-D?

@ Instability result for & < £*7
@ For the Kelvin-Voigt damping, instability if u > |c*|a?

[AG2016] K. Ammari and S. Gerbi. Interior feedback stabilization of wave equations with
dynamic boundary delay Submitted

Thank you for your attention
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