Le LAMA entretient quatre séminaires réguliers, qui se tiennent normalement dans la salle TLR, premier étage du bâtiment Le Chablais, sur le site du Bourget du Lac. D’une part, trois séminaires hebdomadaires existent :

D’autre part, le séminaire du laboratoire a lieu environ tous les trois mois. Il reçoit une personnalité extérieure de renom, sur des sujets pouvant intéresser des membres de plusieurs équipes, ou bien un nouveau membre du laboratoire.

Le séminaire des doctorants a lieu tous les deux mois environ et accueille un jeune chercheur (doctorant, post-doc ou ATER), du Lama ou de la région, pour une présentation d'une heure accessible à tous.

Le séminaire CMI a lieu tous les mois environ et accueille un chercheur qui vient présenter sa recherche aux étudiants suivants le Cursus Master Ingénieur (CMI).

Enfin, le programme des séminaires des laboratoires de la fédération de recherche en Mathématiques (FRMRAA) peuvent être consultés sur les liens suivants :

Prochains séminaires du LAMA :

LAMAJeudi 25 janvier 2018 à 14h Gilles Lebeau (Univ Nice Sophia-Antipolis),
Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles

Résumé : (Masquer les résumés)
We consider the linear wave equation and the linear Schrödinger equation outside a compact, strictly convex obstacle in Rd with smooth boundary. In dimension d=3 we show that the linear wave flow and the linear Schrödinger flow satisfy the dispersive estimates as in R3. For d> 3, if the obstacle is a ball, we show that there exists points where the dispersive estimates fail for both wave and Schrödinger equations.

EDPs²Jeudi 25 janvier 2018 à 11h Gianluca Crippa (University of Basel),
Eulerian and Lagrangian solutions of the continuity equation

Résumé : (Masquer les résumés)
It is well known that the motion of an incompressible fluid can be described in Eulerian variables (as a solution of a PDE, namely the continuity equation), or alternatively in Lagrangian variables (as a flow of an ODE). The classical DiPerna-Lions-Ambrosio theory ensures well-posedness and provides structural properties for solutions of the continuity equation, under suitable regularity assumptions on the velocity field and integrability assumptions on the solution. In my talk I will focus on the ``Lagrangianity'' of solutions, that is, on the property of being transported by an ODE flow, hence addressing the question whether an Eulerian solution is automatically a Lagrangian solution. After a brief summary of the DiPerna-Lions-Ambrosio theory, I will present two examples which are outside of the assumptions of such a theory, and in which nevertheless we can prove the Lagrangianity of solutions. The first one concerns vanishing viscosity solutions of the two-dimensional Euler equations, where we can use suitable duality methods (joint work with Stefano Spirito). The second example involves general continuity equations, and requires the proof of a new Lipschitz extension lemma (joint work with Laura Caravenna).

GéométrieJeudi 25 janvier 2018 à 16h André Belotto da Silva (Institut de Mathématiques de Toulouse),
Solutions des équations quasianalytiques

Résumé : (Masquer les résumés)
Je vais présenter quelques nouvelles techniques pour résoudre les équations G(x,y)=0 où G(x,y)=G(x_1,...,x_n,y) est une fonction dans une classe quasi-analytique (par exemple, une classe Denjoy-Carleman quasi-analytique). Plusieurs questions importantes sur les fonctions quasi-analytiques, concernant la division, la factorisation, le lemme de préparation de Weierstrass, etc., entrent dans le cadre de ce problème. Aucune connaissance préliminaire sur les fonctions quasi-analytiques ne sera nécessaire. Je donnerai un bref panorama sur les fonctions quasi-analytiques, en mettant l’accent sur les différences avec les fonctions analytiques. Ensuite, je présenterai une technique de prolongement quasi-analytique (basée sur la résolution des singularités) et le résultat suivant (à partir d’un travail conjoint avec E. Bierstone et I. Biborski) : si G(x,y)=0 a une solution formelle y=H(x), alors H(x) est le développement de Taylor d’une solution quasi-analytique y=h(x), où h(x) a une certaine perte de régularité contrôlée par G.

LIMDJeudi 25 janvier 2018 à 10h Youssef Fares (Amiens),
Autour de la conjecture de Poonen sur les polynômes quadratiques

Résumé : (Masquer les résumés)
Soit c un nombre rationnel. Considérons le polynôme φ(X) = X^2 - c. On s’intéressse aux cycles de φ dans Q. Plus précisément, on s’intéresse à l’une des conjectures de Poonen selon laquelle tout cycle de φ dans Q admet une longueur au plus égale à 3. Dans notre exposé, on discutera de cette conjecture et on rappellera les résultats connus. En suite, on utilisera des moyens arithmetiques, combinatoriaux et analytiques simples pour étudier des cas particuliers de ce problème. Les outils utilisés dans cet exposé sont accessibles aux étudiants de master 2.

LaboJeudi 25 janvier 2018 à 14h Gilles Lebeau (Univ Nice Sophia-Antipolis),
Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles

Résumé : (Masquer les résumés)
We consider the linear wave equation and the linear Schrödinger equation outside a compact, strictly convex obstacle in Rd with smooth boundary. In dimension d=3 we show that the linear wave flow and the linear Schrödinger flow satisfy the dispersive estimates as in R3. For d> 3, if the obstacle is a ball, we show that there exists points where the dispersive estimates fail for both wave and Schrödinger equations.

CMIJeudi 25 janvier 2018 à 12h50 Michel Raibaut (LAMA),
Autour de la notion d'invariant

Résumé : (Masquer les résumés)
À partir du jeu du solitaire et du troisième problème de Hilbert, nous commencerons par mettre en évidence la notion d'invariant qui est centrale en mathématique comme outil de classification ou d'obstruction. Nous présenterons ensuite le concept d'action de groupes que nous relierons aux invariants, notamment en géométrie à travers le programme d'Erlangen de Felix Klein.