Les séminaires sont communs avec l'équipe Plume (ENS Lyon) et ont lieu en salle de séminaire, premier étage du bâtiment Le Chablais, sur le site du Bourget du Lac ou à l'ENS Lyon.

Prochain séminaire :

Jeudi 29 janvier 2015 à 14h Jean-Louis Verger-Gaugry (LAMA),
Problème de Lehmer et fonctions zeta dynamiques limites

Résumé : (Masquer les résumés)
En 1933 Lehmer enonce le problème suivant : existe-t-il une constante c > 0 telle que la mesure de Mahler M(α) de tout nombre algébrique α non nul et différent d’une racine de l’unité vérifie M(α) ≥ 1 + c. La Conjecture de Lehmer affirme que oui (C. Smyth, ”Survey”, 2014). Pour la tester de nombreuses familles de nombres algébriques tendant vers 1 ont été considérées. Il s'agit d’un problème limite et de minoration de M (ou de la hauteur pour des courbes elliptiques ou des variétés Abéliennes). Un autre problème limite ouvert est de caractériser le premier dérivé de l'ensemble des nombres de Salem T. Une première conjecture de Boyd dit que la réunion S ∪ T des ensembles des nombres de Pisot et de Salem est fermé. Une deuxième conjecture de Boyd affirme que le premier dérivé de l'ensemble des nombres de Salem est l'ensemble des nombres de Pisot. A chaque nombre algébrique réel β > 1 on peut souvent associer trois fonctions zeta dynamiques : (i) la fonction zeta d’Artin-Mazur de la beta-transformation ζ_β(z), qui provient du système dynamique de numération de Rényi-Parry, la base ́étant β; (ii) pour un polynôme P de petit hauteur s’annulant sur β, la fonction zeta de Lefshetz ζ_{L,β,P}(z), qui provient d’un automorphisme du tore n-dimensionnel, où n = deg P, et (iii) la fonction zeta d’Artin-Mazur ζ{AM,β,P}(z), qui provient de la même action sur le tore n-dimensionnel. Si (β_i) est une suite convergente de nombres algebriques, une question fondamentale est de savoir si les fonctions zeta limites peuvent apporter des solutions ou un éclairage nouveau sur ces questions ; par exemple, caractériser la limite des ensembles de pôles des fonctions ζ_{β_i}(z) lorsque i tend vers l'infini. En effet, le contrôle de la hauteur peut donner lieu à des phénomènes d'équidistribution limite de conjugués sur le cercle unité (Bilu, Petsche, Pritsker). On prendra l'exemple d'une famille F de nombres de Perron, qui tendent vers 1, racines dominantes de trinômes de hauteur 1 non réciproques, et de petite mesure de Mahler. On montrera que les développements asymptotiques (de Poincaré) des pôles des fonctions ζ_{β_i}(z) permettent d'obtenir le développement asymptotique de la mesure de Mahler et de prouver directement que la conjecture de Lehmer est vraie pour la famille F.

Le séminaire de l’équipe LIMD est sous la responsabilité de Xavier Provencal.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, toutes ensemble.

Année 2015

Jeudi 21 mai 2015 à 10h30, ENS Lyon TBA (TBA),
Séminaire Chocola

Jeudi 09 avril 2015 à 10h30, ENS Lyon TBA (TBA),
Séminaire Chocola

Jeudi 12 mars 2015 à 10h30, ENS Lyon TBA (TBA),
Séminaire Chocola

Jeudi 05 février 2015 à 10h30, ENS Lyon TBA (TBA),
Séminaire Chocola

Jeudi 29 janvier 2015 à 14h Jean-Louis Verger-Gaugry (LAMA),
Problème de Lehmer et fonctions zeta dynamiques limites

Résumé : (Masquer les résumés)
En 1933 Lehmer enonce le problème suivant : existe-t-il une constante c > 0 telle que la mesure de Mahler M(α) de tout nombre algébrique α non nul et différent d’une racine de l’unité vérifie M(α) ≥ 1 + c. La Conjecture de Lehmer affirme que oui (C. Smyth, ”Survey”, 2014). Pour la tester de nombreuses familles de nombres algébriques tendant vers 1 ont été considérées. Il s'agit d’un problème limite et de minoration de M (ou de la hauteur pour des courbes elliptiques ou des variétés Abéliennes). Un autre problème limite ouvert est de caractériser le premier dérivé de l'ensemble des nombres de Salem T. Une première conjecture de Boyd dit que la réunion S ∪ T des ensembles des nombres de Pisot et de Salem est fermé. Une deuxième conjecture de Boyd affirme que le premier dérivé de l'ensemble des nombres de Salem est l'ensemble des nombres de Pisot. A chaque nombre algébrique réel β > 1 on peut souvent associer trois fonctions zeta dynamiques : (i) la fonction zeta d’Artin-Mazur de la beta-transformation ζ_β(z), qui provient du système dynamique de numération de Rényi-Parry, la base ́étant β; (ii) pour un polynôme P de petit hauteur s’annulant sur β, la fonction zeta de Lefshetz ζ_{L,β,P}(z), qui provient d’un automorphisme du tore n-dimensionnel, où n = deg P, et (iii) la fonction zeta d’Artin-Mazur ζ{AM,β,P}(z), qui provient de la même action sur le tore n-dimensionnel. Si (β_i) est une suite convergente de nombres algebriques, une question fondamentale est de savoir si les fonctions zeta limites peuvent apporter des solutions ou un éclairage nouveau sur ces questions ; par exemple, caractériser la limite des ensembles de pôles des fonctions ζ_{β_i}(z) lorsque i tend vers l'infini. En effet, le contrôle de la hauteur peut donner lieu à des phénomènes d'équidistribution limite de conjugués sur le cercle unité (Bilu, Petsche, Pritsker). On prendra l'exemple d'une famille F de nombres de Perron, qui tendent vers 1, racines dominantes de trinômes de hauteur 1 non réciproques, et de petite mesure de Mahler. On montrera que les développements asymptotiques (de Poincaré) des pôles des fonctions ζ_{β_i}(z) permettent d'obtenir le développement asymptotique de la mesure de Mahler et de prouver directement que la conjecture de Lehmer est vraie pour la famille F.

Jeudi 22 janvier 2015 à 10h Pierre Hyvernat (LAMA),
Représentation des fonctions continues entre ``streams'' (& Co.) par des types de données

Résumé : (Masquer les résumés)
(Travail avec Peter Hancock) Brouwer savait déjà que les fonctions continues entre stream (avec la topologie produit habituelle) pouvaient être représentées par des arbres infinis. Peter Hancock a montré comment transformer ce ``théorème de représentation'' en théorie des types dépendant permettant de manipuler ces fonctions comme un type de données standard. Nous avons récemment pu généraliser ces idées à de nombreux types de données coinductifs en utilisant la notion de ``structure d'interaction'' (ou ``container indexé'' ou ``foncteur polynomial''). J'essaierais d'introduire les notions nécessaire au fur et à mesure : types dépendants, définitions inductives et coinductives, définitions inductive-récursives, etc.

Jeudi 15 janvier 2015 à 10h Xavier Urbain (ENSIIE/CNAM),
Un cadre pour la preuve formelle adapté aux réseaux de robots mobiles

Résumé : (Masquer les résumés)
Les réseaux de robots mobiles reçoivent depuis quelques années une attention croissante de la part de la communauté de l'algorithmique distribuée. Si l'utilisation d'essaims de robots coopérant dans l'exécution de diverses tâches est une perspective séduisante, l'analyse de la faisabilité de certaines tâches dans ce cadre émergent est extrêmement ardue, en particulier si certains robots présentent des comportements dits byzantins, c'est-à-dire arbitraires voire hostiles.

Pour obtentir des garanties formelles dans ce contexte, nous proposons un cadre mécanique formel fondé sur l'assistant à la preuve Coq et adapté aux réseaux de robots. Nous nous intéressons en particulier aux résultats d'impossibilité, fondamentaux en algorithmique distribuée en ce sens qu'ils établissent ce qui peut ou ne peut pas être réalisé et permettent de définir des bornes et, par là, l'optimalité de certaines solutions. Utiliser un assistant comme Coq travaillant à l'ordre supérieur nous permet d'exprimer aisément des quantifications sur les algorithmes, ceux-ci étant considérés comme des objets abstraits. Nous illustrons les possibilités offertes par notre développement en présentant les premières preuves formelles (et donc certifications) de certains résultats comme l'impossibilité de la convergence de robots amnésiques lorsqu'un tiers d'entre eux sont byzantins, ou encore l'impossibilité du rassemblement pour un nombre pair de robots évoluant dans R.

Le séminaire de l’équipe LIMD est sous la responsabilité de Xavier Provencal.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, toutes ensemble.