Les séminaires ont lieu en salle TLR, premier étage du bâtiment Le Chablais, sur le site du Bourget du Lac.

Prochain séminaire :

Jeudi 26 janvier 2017 à 16h Charles Favre (Ecole polytechnique),
Dégénérescence des endomorphismes des espaces projectifs

Résumé : (Masquer les résumés)
On considère une famille méromorphe d'endomorphismes d'un espace projectif complexe paramétrée par le disque. Cette donnée nous fournit une famille de mesures de probabilité paramétrée par le disque épointé. Nous montrerons comment on peut analyser la convergence de cette suite au dessus de la fibre centrale en utilisant des techniques non-archimédiennes, et en déduire un contrôle de l'explosion de l'exposant de Lyapunov à l'origine.

Le séminaire de l’équipe Géométrie est sous la responsabilité de Michel Raibaut.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, toutes ensemble.

Année 2017

Jeudi 16 février 2017 à 14h Mohamed Benzerga (LAREMA Angers),
Structures réelles sur les surfaces rationnelles

Résumé : (Masquer les résumés)
Une structure réelle sur une variété projective complexe X est une involution antiholomorphe sur cette variété. La donnée d'une telle structure équivaut à la donnée d'une variété réelle dont la complexification est isomorphe à X (i.e. une forme réelle de X). Le but de cet exposé est de montrer comment l'étude des groupes d'automorphismes des surfaces rationnelles peut être utilisée en vue de donner des éléments de réponse à la question de la finitude du nombre de classes d'équivalence de structures réelles sur ces éclatés, i.e. la finitude du nombre de leurs formes réelles à isomorphisme près. En particulier, nous montrerons qu'une surface rationnelle dont le groupe d'automorphismes ne contient pas un groupe libre non-abélien admet un nombre fini de formes réelles puis nous donnerons au moins un exemple de surface rationnelle ayant à la fois un nombre fini de formes réelles à isomorphisme près et un ``grand'' groupe d'automorphismes.

Jeudi 02 février 2017 à 15h Essouabri Driss (Université Jean Monnet (Saint-Etienne)),
À venir

Résumé : (Masquer les résumés)
À venir

Jeudi 26 janvier 2017 à 16h Charles Favre (Ecole polytechnique),
Dégénérescence des endomorphismes des espaces projectifs

Résumé : (Masquer les résumés)
On considère une famille méromorphe d'endomorphismes d'un espace projectif complexe paramétrée par le disque. Cette donnée nous fournit une famille de mesures de probabilité paramétrée par le disque épointé. Nous montrerons comment on peut analyser la convergence de cette suite au dessus de la fibre centrale en utilisant des techniques non-archimédiennes, et en déduire un contrôle de l'explosion de l'exposant de Lyapunov à l'origine.

Jeudi 19 janvier 2017 à 15h Thomas Letendre (ENS Lyon),
Volume de sous-variétés algébriques réelles aléatoires

Résumé : (Masquer les résumés)
On s'intéressera à un modèle naturel de sous-variété algébrique aléatoire de RP^n, obtenue comme lieu d'annulation d'un polynôme P_d aléatoire de degré d. Je présenterai deux résultats qui donnent les asymptotiques de l'espérance et de la variance du volume de cette sous-variété, lorsque d tend vers l'infini. Nous montrerons également que (P_d)^{-1}(0) s'équidistribue dans RP^n asymptotiquement, en un sens à préciser. Plus généralement, ces résultats sont valables pour des sous-variétés aléatoires d'une variété projective réelle. Les asymptotiques ne dépendent alors de la variété ambiante que par sa dimension et son volume.

Résumé disponible sous forme de fichier PDF.

Jeudi 05 janvier 2017 à 14h Kevin Langlois (University Heinrich Heine. Dusseldorf),
Actions des groupes réductifs avec orbites sphériques et combinatoires

Résumé : (Masquer les résumés)
Dans cet exposé, nous introduisons une description combinatoire pour décrire et classifier les G-variétés normales avec orbites sphériques, où G est un groupe algébrique linéaire connexe réductif. Un des exemples fondamentaux est le cas où G = T est un tore algébrique (c'est à dire, T est le produit d'un nombre fini d'exemplaires du groupe multiplicatif du corps de base). Dans ce cas, l'approche d'Altmann-Hausen-Suess décrit une T-variété normale X via une modification T-équivariante f de X' vers X, où X' est une fibration torique au dessus d'une variété lisse Y. Leur approche obtenue en 2008 est de considérer un diviseur sur Y dont les coefficients sont des subdivisions polyédrales encodant l'information sur la modification f et la géométrie des fibres de la fibration de X' vers Y. En particulier, lorsque Y est un point, nous retrouvons la description classique des variétés toriques en termes d'éventails de cônes polyédraux saillants. Nous expliquerons comment généraliser cette description dans le cadre plus général des actions de groupes réductifs avec orbites sphériques et discuterons sur les applications possibles en théorie des singularités. L'exposé se veut introductif et ne demande pas de prérequis particulier.

Le séminaire de l’équipe Géométrie est sous la responsabilité de Michel Raibaut.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, toutes ensemble.