Laboratoire de mathématiques de l’Université de Savoie

Le séminaire de l’équipe Géométrie est sous la responsabilité de Frédéric Bihan.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, toutes ensemble.

Année 2014

Vendredi 18 avril 2014 à 10h Jean-Baptiste Campesato (Nice, Laboratoire JA Dieudonné),
Un théorème d'inversion pour les applications analytiques par arcs

Résumé : (Masquer les résumés)
Le but de cet exposé est de montrer que sous certaines hypothèses, pouvant être comparées à celles du théorème d'inversion locale, l'inverse d'une application analytique par arcs d'un ensemble algébrique réel dans lui-même est encore analytique par arcs. La première étape consiste à démontrer une version du lemme clé de Denef-Loeser pour la formule de changement de variables motivique qui satisfait nos conditions. Le reste de la preuve repose essentiellement sur le polynôme de Poincaré virtuel de McCrory-Parusinski et de Fichou.

Vendredi 11 avril 2014 à 10h15 Nikita Kalinin (Université de Genève),
Tropical geometry in questions around Nagata's conjecture

Résumé : (Masquer les résumés)
I will explain how tropical geometry is applicable in estimations of minimal degree of a variety on which we impose conditions like passing through a number of points or lines with prescribed multiplicities.

Vendredi 14 mars 2014 à 10h Mickaël Kourganoff (ENS Lyon),
Mécanismes dans le plan de Minkowski et théorèmes d'universalité

Résumé : (Masquer les résumés)
Un mécanisme est un ensemble de tiges rigides reliées par des joints flexibles. Mathématiquement, il s'agit d'un graphe ``marqué'' : chaque arête possède une longueur fixée et certains sommets ont une position fixée, tandis que d'autres peuvent se déplacer. L'espace de configuration d'un mécanisme est l'ensemble de ses positions possibles. Cet espace est un ensemble algébrique et, le plus souvent, une variété lisse. La plupart des travaux existants considèrent des mécanismes dans le plan euclidien, même si des mécanismes dans d'autres cadres (sphère, plan hyperbolique) ont déjà été étudiés. En 2002, Millson et Kapovich ont montré que pour toute variété différentiable compacte M, il existe un mécanisme sur le plan euclidien dont l'espace de configuration est l'union disjointe d'un nombre fini de copies de M. C'est un résultat que Thurston avait présenté dans des cours, mais jamais publié. Nous verrons comment ce résultat se transpose dans le cadre de mécanismes sur le plan de Minkowski, c'est-à-dire le plan muni de la forme quadratique non définie dx^2 - dt^2 : dans cette situation, il s'étend même à certaines variétés non compactes.

Vendredi 28 février 2014 à 10h, Université de Lyon Inauguration Fédération de Recherche en Mathématiques Rhône-Alpe (Université de Lyon),
Trois exposés

Résumé : (Masquer les résumés)
Inauguration de la Fédération de Recherche en Mathématiques Rhône-Alpes-Auvergne, Lyon, Amphithéâtre ASTREE, 13, Campus scientifique de la Doua Vendredi 28 Février 2014, horaires à définir. Cédric Villani ``Des triangles, des gaz, des prix et des hommes'', Eric Blayo ``Les maths c'est bon pour la planète'', Laurent Chupin ``Equations au cœur de la roche''. Voir http://frmraa.math.cnrs.fr/

Jeudi 27 février 2014 à 14h Marcin BILSKI (Université Jagellone, Cracovie),
Approximation of analytic maps into algebraic varieties

Résumé : (Masquer les résumés)
We will discuss a geometric proof of the theorem on Nash approximation of analytic maps into algebraic varieties. (Joint work with A. Parusinski.)

Vendredi 21 février 2014 à 10h Frédéric Bihan (LAMA),
Une généralisation de la règle de Descartes en plusieurs variables

Résumé : (Masquer les résumés)
La règle de Descartes borne le nombre de racines positives d'un polynôme réel en une variable par le nombre de changements de signe consécutifs de ses coordonnées dans la base monomiale (ordonnée suivant les puissances croissantes). La borne obtenue est optimale et généraliser la règle de Descartes aux systèmes polynomiaux en plusieurs variables est un problème très difficile. Dans un travail avec Alicia Dickenstein (Université de Buenos Aires), nous avons obtenu la première généralisation de la règle de Descartes en plusieurs variables. Notre règle s'applique aux systèmes polynomiaux en un nombre arbitraire n de variables dont le support consiste en n+2 monômes quelconques et est également optimale. Elle borne le nombre de solutions positives d'un tel système par un nombre de changements de signe obtenus en considérant des mineurs maximaux de la matrice des coefficients ainsi que de celle des exposants du système.

Vendredi 07 février 2014 à 10h Kévin Langlois (Institut Fourier),
Sur les opérations de tores algébriques de complexité un dans les variétés affines.

Résumé : (Masquer les résumés)
L'objet de cet exposé est l'étude des variétés algébriques affines normales munies d'une opération d'un tore algébrique $T$. Le corps de base est supposé arbitraire. Nous exposons une description combinatoire inspirée des travaux de Klaus Altmann et de Juergen Hausen de ces variétés lorsque l'opération de $T$ est de complexité un. Ensuite nous donnerons quelques résultats nouveaux les concernant.

Vendredi 24 janvier 2014 à 10h Sébastien Tavenas (ENS Lyon),
Intersections d'une courbe creuse et d'une courbe de petit degré: une version polynomiale du théorème perdu.

Résumé : (Masquer les résumés)
Un polynôme non nul de degré d a au plus d racines complexes. Mais on sait, depuis les travaux de Descartes, que le nombre de monômes est lui aussi un paramètre limitant du nombre de racines réelles. Plus précisément, un polynôme avec t monômes a au plus 2t-1 racines réelles. Que se passe t'il maintenant si l'on considère les solutions d'un système de polynômes? Dans, le cas complexe, le théorème de Bézout permet de borner leur nombre par le produit des degrés. Mais dans le cas réel, existerait-il une borne supérieure ne dépendant que des nombres de monômes? Et dans ce cas, quelle est cette borne? Le problème de l'existence a été résolue par Khovanskií, mais la question de son ordre de grandeur reste grandement ouverte. Un cas particulier connu comme le problème de Sevostyanov est celui d'un système composé d'un polynôme de degré d et d'un polynôme t-creux. Nous présenterons dans cet exposé, une borne polynomiale en t et en d pour ce problème..

Vendredi 17 janvier 2014 à 10h Alexei Tsygvintsev (ENS Lyon UMPA),
Sur les g-fractions continues

Résumé : (Masquer les résumés)
En 1948 H.S. Wall a publié ses résultats sur la théorie analytique des fractions continues. Dans la première partie de cet exposé nous décrivons cette classe remarquable de fractions continues appelées g-fractions. Nous montrerons comment elles peuvent être utilisées pour approcher certaines applications analytiques bornées réelles. La deuxième partie sera consacrée aux divers applications. Nous discuterons la conjecture de Ramanujan, la théorie de renormalisation des applications unimodales, ABC-flow et le problème de n-centres de la Mécanique Céleste

Le séminaire de l’équipe Géométrie est sous la responsabilité de Frédéric Bihan.
Options : Voir par date croissante . Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, toutes ensemble.