Les séminaires ont lieu en salle TLR, premier étage du bâtiment Le Chablais, sur le site du Bourget du Lac.

Prochain séminaire :

Vendredi 02 mars 2018 à 14h Tatsuo Iguchi (Keio University),
Isobe-Kakinuma model for water waves as a higher order shallow water approximation

Résumé : (Masquer les résumés)
We consider the initial value problem to the Isobe-Kakinuma model for water waves. As was shown by J. C. Luke, the water wave problem has a variational structure. By approximating the velocity potential in Luke's Lagrangian, we obtain an approximate Lagrangian for water waves. The Isobe-Kakinuma model is a corresponding Euler-Lagrange equation for the approximate Lagrangian. In this talk, we first explain a structure of the Isobe-Kakinuma model and then justify the model rigorously as a higher order shallow water approximation by giving an error estimate between the solutions of the model and of the full water wave problem. It is revealed that the Isobe-Kakinuma model is a much more precise model than the well known Green-Naghdi equations.

Le séminaire de l’équipe EDPs² est sous la responsabilité de Jimmy Garnier.
Options : Voir par date décroissante. Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, toutes ensemble.

Année 2018

Vendredi 12 janvier 2018 à 14h Journée Calcul des Variations et EDP (Université Grenoble),
Journée Calcul des Variations et EDP, le 12 Janvier 2018 à Grenoble

Vendredi 12 janvier 2018 à 14h Anne de Bouard (Ecole Polytechnique),
Homogénéisation stochastique de l’équation de Landau-Lifshitz

Résumé : (Masquer les résumés)
La théorie du micromagnétisme, qui décrit l'aimantation des matériaux ferromagnétiques à l’échelle mésoscopique a fait l'objet d'études approfondies depuis sa construction dans les années 1940 par W. F. Brown et Landau-Lifshitz. Actuellement, une forte demande de la part d’une large communauté de physiciens et d'ingénieurs concerne l’obtention de modèles encore plus complexes et stochastiques (spatiaux et temporels). L’utilisation de structures aléatoires spatiales est en effet naturelle pour les aimants modernes, obtenus par alliage de plusieurs matériaux ayant des propriétés magnétiques différentes. Nous étudierons l’homogénéisation de ces matériaux, décrits par les équations de Landau-Lifshitz avec des coefficients aléatoires.

Jeudi 18 janvier 2018 à 11h15 Matthieu Hillairet (Univ Montpellier),
Homogeneisation du probleme de Stokes et methode de reflections

Résumé : (Masquer les résumés)
Dans cet expose je m'interesserai a la resolution du probleme de Stokes stationnaire dans un domaine perfore avec des conditions aux bords de type Dirichlet inhomogene. Je discuterai la possibilite de developper la solution sur cette geometrie complexe comme une somme de solution dans des geometries plus simples (obtenues en considerant les perforations independamment). Je m'interesserai ensuite a l'application de ces formules pour calculer une equation homogeneisee quand le nombre de perforations diverge alors que leurs rayons tendent vers 0. Cet expose s'appuie sur des resultats obtenus en collaboration avec Amina Mecherbet, Ayman Moussa et Franck Sueur.

Jeudi 25 janvier 2018 à 11h Gianluca Crippa (University of Basel),
Eulerian and Lagrangian solutions of the continuity equation

Résumé : (Masquer les résumés)
It is well known that the motion of an incompressible fluid can be described in Eulerian variables (as a solution of a PDE, namely the continuity equation), or alternatively in Lagrangian variables (as a flow of an ODE). The classical DiPerna-Lions-Ambrosio theory ensures well-posedness and provides structural properties for solutions of the continuity equation, under suitable regularity assumptions on the velocity field and integrability assumptions on the solution. In my talk I will focus on the ``Lagrangianity'' of solutions, that is, on the property of being transported by an ODE flow, hence addressing the question whether an Eulerian solution is automatically a Lagrangian solution. After a brief summary of the DiPerna-Lions-Ambrosio theory, I will present two examples which are outside of the assumptions of such a theory, and in which nevertheless we can prove the Lagrangianity of solutions. The first one concerns vanishing viscosity solutions of the two-dimensional Euler equations, where we can use suitable duality methods (joint work with Stefano Spirito). The second example involves general continuity equations, and requires the proof of a new Lipschitz extension lemma (joint work with Laura Caravenna).

Vendredi 09 février 2018 à 14h Michiel Van den Berg (University Bristol),
Optimal inequalities for Lp norms of the torsion function.

Résumé : (Masquer les résumés)
Bounds are obtained for Lp norm of the torsion function vΩ , i.e. the solution of −∆v = 1, v=0 on the boundary of Ω and v ∈ H1(Ω) in terms of the Lebesgue measure of an open set Ω ⊂ Rm and the principal Dirichlet eigenvalue λ1(Ω) of the Dirichlet Laplacian acting in L²(Ω). Joint work with Thomas Kappeler, University of Zürich.

Vendredi 02 mars 2018 à 14h Tatsuo Iguchi (Keio University),
Isobe-Kakinuma model for water waves as a higher order shallow water approximation

Résumé : (Masquer les résumés)
We consider the initial value problem to the Isobe-Kakinuma model for water waves. As was shown by J. C. Luke, the water wave problem has a variational structure. By approximating the velocity potential in Luke's Lagrangian, we obtain an approximate Lagrangian for water waves. The Isobe-Kakinuma model is a corresponding Euler-Lagrange equation for the approximate Lagrangian. In this talk, we first explain a structure of the Isobe-Kakinuma model and then justify the model rigorously as a higher order shallow water approximation by giving an error estimate between the solutions of the model and of the full water wave problem. It is revealed that the Isobe-Kakinuma model is a much more precise model than the well known Green-Naghdi equations.

Le séminaire de l’équipe EDPs² est sous la responsabilité de Jimmy Garnier.
Options : Voir par date décroissante. Masquer les résumés.
Autres années : 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, toutes ensemble.