Seminars take place in the seminar room, second floor of the building Le Chablais, on the Bourget-du-lac (Savoy) site.

Next seminar:

Thursday 18th January 2018 at 11h15 Matthieu Hillairet (Univ Montpellier),
Homogeneisation du probleme de Stokes et methode de reflections

Abstract: (Hide abstracts)
Dans cet expose je m'interesserai a la resolution du probleme de Stokes stationnaire dans un domaine perfore avec des conditions aux bords de type Dirichlet inhomogene. Je discuterai la possibilite de developper la solution sur cette geometrie complexe comme une somme de solution dans des geometries plus simples (obtenues en considerant les perforations independamment). Je m'interesserai ensuite a l'application de ces formules pour calculer une equation homogeneisee quand le nombre de perforations diverge alors que leurs rayons tendent vers 0. Cet expose s'appuie sur des resultats obtenus en collaboration avec Amina Mecherbet, Ayman Moussa et Franck Sueur.

The seminar of the team EDPs² is under the responsibility of Jimmy Garnier.
Settings: See with increasing date . Hide abstracts
Other years: 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, all years together.

Year 2018

Friday 2nd March 2018 at 14h Tatsuo Iguchi (Keio University),
à venir

Friday 9th February 2018 at 14h Michiel Van den Berg (University Bristol),
Optimal inequalities for Lp norms of the torsion function.

Abstract: (Hide abstracts)
Bounds are obtained for Lp norm of the torsion function vΩ , i.e. the solution of −∆v = 1, v=0 on the boundary of Ω and v ∈ H1(Ω) in terms of the Lebesgue measure of an open set Ω ⊂ Rm and the principal Dirichlet eigenvalue λ1(Ω) of the Dirichlet Laplacian acting in L²(Ω). Joint work with Thomas Kappeler, University of Zürich.

Thursday 25th January 2018 at 14h Gilles Lebeau (Univ Nice Sophia-Antipolis),
Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles

Abstract: (Hide abstracts)
We consider the linear wave equation and the linear Schrödinger equation outside a compact, strictly convex obstacle in Rd with smooth boundary. In dimension d=3 we show that the linear wave flow and the linear Schrödinger flow satisfy the dispersive estimates as in R3. For d> 3, if the obstacle is a ball, we show that there exists points where the dispersive estimates fail for both wave and Schrödinger equations.

Thursday 25th January 2018 at 11h Gianluca Crippa (University of Basel),
Eulerian and Lagrangian solutions of the continuity equation

Abstract: (Hide abstracts)
It is well known that the motion of an incompressible fluid can be described in Eulerian variables (as a solution of a PDE, namely the continuity equation), or alternatively in Lagrangian variables (as a flow of an ODE). The classical DiPerna-Lions-Ambrosio theory ensures well-posedness and provides structural properties for solutions of the continuity equation, under suitable regularity assumptions on the velocity field and integrability assumptions on the solution. In my talk I will focus on the ``Lagrangianity'' of solutions, that is, on the property of being transported by an ODE flow, hence addressing the question whether an Eulerian solution is automatically a Lagrangian solution. After a brief summary of the DiPerna-Lions-Ambrosio theory, I will present two examples which are outside of the assumptions of such a theory, and in which nevertheless we can prove the Lagrangianity of solutions. The first one concerns vanishing viscosity solutions of the two-dimensional Euler equations, where we can use suitable duality methods (joint work with Stefano Spirito). The second example involves general continuity equations, and requires the proof of a new Lipschitz extension lemma (joint work with Laura Caravenna).

Thursday 18th January 2018 at 11h15 Matthieu Hillairet (Univ Montpellier),
Homogeneisation du probleme de Stokes et methode de reflections

Abstract: (Hide abstracts)
Dans cet expose je m'interesserai a la resolution du probleme de Stokes stationnaire dans un domaine perfore avec des conditions aux bords de type Dirichlet inhomogene. Je discuterai la possibilite de developper la solution sur cette geometrie complexe comme une somme de solution dans des geometries plus simples (obtenues en considerant les perforations independamment). Je m'interesserai ensuite a l'application de ces formules pour calculer une equation homogeneisee quand le nombre de perforations diverge alors que leurs rayons tendent vers 0. Cet expose s'appuie sur des resultats obtenus en collaboration avec Amina Mecherbet, Ayman Moussa et Franck Sueur.

Friday 12th January 2018 at 14h Anne de Bouard (Ecole Polytechnique),
Homogénéisation stochastique de l’équation de Landau-Lifshitz

Abstract: (Hide abstracts)
La théorie du micromagnétisme, qui décrit l'aimantation des matériaux ferromagnétiques à l’échelle mésoscopique a fait l'objet d'études approfondies depuis sa construction dans les années 1940 par W. F. Brown et Landau-Lifshitz. Actuellement, une forte demande de la part d’une large communauté de physiciens et d'ingénieurs concerne l’obtention de modèles encore plus complexes et stochastiques (spatiaux et temporels). L’utilisation de structures aléatoires spatiales est en effet naturelle pour les aimants modernes, obtenus par alliage de plusieurs matériaux ayant des propriétés magnétiques différentes. Nous étudierons l’homogénéisation de ces matériaux, décrits par les équations de Landau-Lifshitz avec des coefficients aléatoires.

Friday 12th January 2018 at 14h Journée Calcul des Variations et EDP (Université Grenoble),
Journée Calcul des Variations et EDP, le 12 Janvier 2018 à Grenoble

The seminar of the team EDPs² is under the responsibility of Jimmy Garnier.
Settings: See with increasing date . Hide abstracts
Other years: 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, all years together.