The seminar of the team Labo is under the responsibility of Michel Raibaut.
Settings: See with increasing date . Hide abstracts
Other years: 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015, 2016, 2017, 2018, all years together.

Year 2013

Thursday 14th November 2013 at 15h Hervé Pajot (Université de Grenoble I),
Courbure et inégalités de Poincaré

Abstract: (Hide abstracts)
Un résultat maintenant classique (et souvent attribué a Peter Buser) dit que toute variété riemannienne complète à courbure de Ricci positive admet des inégalités de Poincaré. Dans cet exposé, on essayera de donner/proposer des analogues du théorème de Buser dans le cas des espaces métriques continus (espace géodésiques) ou discrets (graphes).

Thursday 20th June 2013 at 10h Benjamin Nill (Case Western Reserve University - en partance pour l'université de Stockholm),
Ehrhart polynomials and A-Discriminants

Abstract: (Hide abstracts)
In this talk I will illustrate how to use basic results in Ehrhart theory to solve a problem on discriminants. I will introduce all the necessary notions such as Ehrhart polynomials and lattice polytopes. As it turns out, the problem will be reduced to a question about binomial coefficients.

Thursday 4th April 2013 at 14h Thomas Seiller (LAMA, LIMD),
Géométrie de l'interaction: Preuves, Opérateurs et Complexité Algorithmique

Abstract: (Hide abstracts)
La logique, et plus particulièrement la théorie de la démonstration — domaine qui a pour objet d'étude les preuves mathématiques, a récemment donné lieu à de nombreux développements concernant l'informatique théorique. Ces développements se fondent sur une correspondance, dite de Curry-Howard, entre les preuves mathématiques et les programmes informatiques. L'intérêt de cette correspondance provient du fait que celle-ci soit dynamique: l'exécution des programmes correspond à une procédure sur les preuves, dite d'élimination des coupures. Suite à une étude poussée de la formalisation des preuves, Jean-Yves Girard a initié le programme de géométrie de l'interaction. Ce programme, dans une première approximation, a pour objectif l'obtention d'une représentation des preuves rendant compte de la dynamique de l'élimination des coupures. Via la correspondance entre preuves et programmes, cela correspond donc à obtenir une sémantique des programmes rendant compte de la dynamique de leur exécution. Cependant, le programme de géométrie de l'interaction est plus ambitieux: au-delà de la simple interprétation des preuves, il s'agit d'une complète reconstruction de la logique autour de la dynamique d'élimination des coupures. On reconstruit donc la logique des programmes eux-mêmes, dans un cadre où la notion de formule rend compte du comportement des algorithmes. Depuis l'introduction de ce programme, Jean-Yves Girard a proposé plusieurs constructions afin de le réaliser dans lesquelles les preuves sont représentées par des opérateurs dans une algèbre de von Neumann. Ces constructions étant fondées sur la notion d'exécution des programmes, le programme de géométrie de l'interaction est particulièrement pertinent pour l'étude de la complexité algorithmique. En particulier, ce programme a déjà démontré qu'il permettait de formaliser à l'aide d'outils mathématiques des classes de complexité en temps et en espace.

Thursday 28th March 2013 at 14h Pascal Koiran (Ecole Normale Supérieure de Lyon),
A Wronskian approach to the real tau-conjecture

Abstract: (Hide abstracts)
According to Shub and Smale's tau-conjecture, the number of integer roots of a univariate polynomial should be polynomially bounded in the size of the smallest (constant free) straight-line program computing it. This statement becomes provably false if one counts real roots instead of integer roots. I have proposed a real version of the tau-conjecture where the attention is restricted to straight-line programs of a special form: the sums of products of sparse polynomials. This conjecture implies that the permanent polynomial cannot be computed by polynomial-size arithmetic circuits. The complexity of the permanent in the arithmetic circuit model is a long standing open problem, which can be thought of as an algebraic version of P versus NP. In this talk I will present the real tau-conjecture and its consequence for the permanent. If time allows, I will introduce a new tool in this context: the Wronksian determinant. This leads to some modest progress on the real tau-conjecture, and to new bounds on the number of solutions of sparse systems of polynomial equations. The latter bounds seem to be of independent interest from the point of view of real algebraic geometry.

The seminar of the team Labo is under the responsibility of Michel Raibaut.
Settings: See with increasing date . Hide abstracts
Other years: 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015, 2016, 2017, 2018, all years together.